
This document is issued within the frame and for the purpose of the FHISY project. This project has received funding from the European

Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 952644. The opinions expressed and arguments

employed herein do not necessarily reflect the official views of the European Commission.

This document and its content are the property of the FISHY Consortium. All rights relevant to this document are determined by the applicable

laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to

be used or treated in any manner inconsistent with the rights or interests of the FISHY Consortium or the Partners detriment and are not to

be disclosed externally without prior written consent from the FISHY Partners.

Each FISHY Partner may use this document in conformity with the FISHY Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI:

Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

A coordinated framework for cyber resilient supply chain systems over complex ICT

infrastructures

D3.1 Trust Manager components design and

implementation (IT-1)

Keywords:

Trust, authentication, privacy, access control, data infrastructure, threat repository, detection,
mitigation, attestation

Document Identification

Status Final Due Date 31/05/2021

Version 1.0 Submission Date 30/06/2021

Related WP WP3 Document Reference D3.1

Related
Deliverable(s)

 Dissemination Level
(*)

CO

Lead Participant TID Lead Author Diego López, Antonio
Pastor, Luis Conteras

Contributors TID, SYN, XLAB, UPC,
UMINHO, ATOS, POLITO

Reviewers Daniele Canavese, POLITO

Eva Marín, UPC

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 2 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Diego R. López, Antonio Pastor, Luis Contreras TID

Daniele Canavese, Cesare Cameroni, Ignazio Pedone POLITO

Ales Cervinec XLAB

Henrique Santos UMinho

Jose Javier Vicente Mohino ATOS

Xavier Masip, Eva Marín, Sergi Sánchez UPC

Nelly Leligou, Panos Trakadas SYN

Document History

Version Date Change editors Changes

0.1 03/03/2021 Diego R. López, Antonio
Agustín Pastor (TID)

ToC and initial structure

0.2 27/04/2021 Diego R. López, Antonio
Agustín Pastor (TID)

First round of contributions (UPC, UMinho,
Xlab. ATOS)

0.3 05/05/2021 Diego R. López, Antonio
Agustín Pastor (TID)

Second round of contributions

0.4 17/05/2021 Diego R. López, Antonio
Agustín Pastor (TID)

After first complete review by editors

0.5 26/05/2021 Diego R. López, Antonio
Agustín Pastor (TID)

Ready for new round of inputs, after
agreement on contents for design and
implementation sections

0.6 27/06/2021 Diego R. López, Antonio
Agustín Pastor (TID)

Ready for project internal review

0.7 29/06/2021 Diego R. López, Antonio
Agustín Pastor (TID)

Final version for Quality Assessment

1.0 29/06/2021 Jose Francisco Ruiz (Atos)

Juan Alonso (Atos)

Quality assessment and final version to be
submitted.

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Diego López, Antonio Pastor, Luis Contreras (TID) 27/06/2021

Quality manager Alonso, Juan Andres (ATOS) 30/06/2021

Project Coordinator Ruiz, Jose Francisco (ATOS) 30/06/2021

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 3 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Table of Contents

Document Information ... 2

Table of Contents ... 3

List of Tables... 5

List of Figures ... 6

List of Acronyms ... 7

Executive Summary .. 9

1 Introduction .. 10

1.1 Purpose of the document ... 10

1.2 Relation to other project work ... 10

1.3 Structure of the document ... 10

2 FISHY platform architecture .. 11

3 Design ... 14

3.1 Security & Privacy Data Space Infrastructure ... 15

3.1.1 Access Control .. 15

3.1.2 Identity Manager ... 18

3.1.3 Access Policy .. 19

3.1.4 Data Management ... 21

3.2 Trust & Incident Management.. 24

3.2.1 Vulnerability Assessment ... 25

3.2.2 Incident Detection ... 27

3.2.3 Impact Assessment .. 30

3.2.4 Mitigation .. 31

3.2.5 Threat/Attack Repository ... 32

3.2.6 Smart Contracts ... 33

3.3 Metric Gathering .. 34

4 Implementation .. 36

4.1 Security & Privacy Data Space Infrastructure ... 36

4.1.1 Identity Manager and Access Policy ... 36

4.1.2 Data Infrastructure .. 38

4.2 Trust & Incident Management.. 39

4.2.1 Vulnerability Assessment ... 39

4.2.2 Incident Detection ... 41

4.2.3 Impact Assessment .. 43

4.2.4 Mitigation .. 43

4.2.5 Threat/Attack Repository ... 43

4.2.6 Smart Contracts ... 44

4.3 Metrics Gathering Tools ... 45

4.3.1 Nagios .. 45

4.3.2 OSSEC ... 46

4.3.3 XL-SIEM .. 46

4.3.4 Wazuh .. 47

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 4 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

4.3.5 VAT (XLAB) ... 48

5 Conclusions ... 49

References ... 50

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 5 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

List of Tables

Table 1: Summary of TM internal architectural blocks and modules .. 14

Table 2: List of DAPPs provided by the SC module .. 44

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 6 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

List of Figures

Figure 1. Initial FISHY architecture___ 11

Figure 2. Action areas in FISHY ___ 12

Figure 3. Mapping between FISHY components and action areas ____________________________ 13

Figure 4. General SPI workflow ___ 15

Figure 5. Client Credentials Flow __ 16

Figure 6. Authorization Code Flow ___ 17

Figure 7. Resource Owner Password Flow ___ 17

Figure 8. Policy-based Architecture __ 20

Figure 9. Authorization Protocol Flow __ 21

Figure 10. Data Infrastructure architecture ___ 23

Figure 11. Data Infrastructure Workflow ___ 24

Figure 12. Sending metrics to TIM ___ 24

Figure 13. Vulnerability assessment, exemplified with RAE _________________________________ 25

Figure 14. Format of the vulnerability report by RAE ______________________________________ 25

Figure 15. Remote attestation workflow __ 28

Figure 16. High-level Trust Monitor architecture ___ 29

Figure 17. Impact assessment, exemplified with RAE ______________________________________ 31

Figure 18. ML-based mitigation workflow __ 32

Figure 19. High-level workflow involving the Threat/Attack repository _______________________ 33

Figure 20. FISHY Smart Contract sub-modules ___ 33

Figure 21. Realm management architecture___ 37

Figure 22. Initial Data Fabric Node architecture __ 38

Figure 23. Inputs and outputs of RAE __ 39

Figure 24. Architecture of the XL-SIEM ___ 42

Figure 25. Example of security events graphic provided by XL-SIEM __________________________ 47

Figure 26. Example of a VAT report __ 48

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 7 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

ABAC Attribute-based access control

AC Access control

AS Authorisation Server

AT Access token

CMM Capability maturity model

DAC Discretionary access control

DAPP Distributed application

DI Digital identity

DL Distributed ledger

DoS Denial of Service

EDC Enforcement & Dynamic Configuration

IdM Identity management

IdAM Identity and Access Management)

IRO Intent-based Resilience Orchestrator & Dashboard

JWT JSON Web tokens

M2M Machine to machine

MAC Mandatory access control

OIDC OpenID Connect

OrBAC Organization-based access control

OSSEC Open Source HIDS SECurity

RA Remote Attestation

RAE Risk Assessment Engine

RBAC Role-based access control

RoT Root-of-Trust

RP Relying Party

RS Resource Server

SAML Security assertion markup language

SC Smart contract

SCM Security & Certification Manager

SDLC Software development lifecycle

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 8 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Abbreviation /
acronym

Description

SIA Secure Infrastructure Abstraction

SSEDIC Scoping the Single European Digital Identity Community

SPI Security & Privacy Data Space Infrastructure

TIM Trust & Incident Manager

TM Trust Manager

TMon Trust Monitor

TPM Trusted Platform Module

UCON Usage control

UE User equipment

XACML Extensible access control markup language

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 9 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Executive Summary

This document constitutes the first step in the generation of the Trust Manager (TM), one of the four
main functional elements of the FISHY architecture. In general terms, the TM is the element in charge
of collecting and forwarding evidence within the FISHY decision cycle. It processes the data made
available by the infrastructure abstraction and by specific metric gathering tools, applying privacy
principles and normalizing the data flows so they become suitable for the analytics elements that
assess the security of the devices, components and systems in the supply chain controlled by the FISHY
framework.

The TM is divided into two blocks, the Trust & Incident Manager (TIM) and the Security & Privacy Data
Space Infrastructure (SPI). While the SPI is in charge of the collection, forwarding and storage of data,
the TIM incorporates the security assessment mechanisms.

This document puts the blocks constituting the TM in the context of the whole framework, identifying
the modules constituting them, describing their functional characteristics and required interfaces, and
discussing the relevant workflows in which they are involved. As part of a practical approach, the
applicable tools identified by the project team to implement the discussed functionalities are
described, including the related features, and the necessary adaptations to interface them within the
TM environment and with the rest of the FISHY framework.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 10 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This document provides the initial design of the FISHY Trust Manager (TM), aligned with the first
project development iteration. It addresses the characteristics of the two blocks identified within the
TM, namely the Trust & Incident Management (TIM) and the Security & Privacy Data Space
Infrastructure (SPI), along with their internal components.

It considers the functional aspects regarding data flow and identity management, applying privacy-by-
design practices and incorporating mechanisms for monitoring data normalization and forwarding. The
mechanisms for vulnerability and risks analysis, prediction and estimation and the incident detection
and mitigation strategies are considered as well.

1.2 Relation to other project work

The initial TM design is tightly coupled with the design of the other FISHY functional elements in the
context of the first development iteration, and especially with the Security and Certification Manager
(SCM) element in WP4, particularly regarding the proper design of the interfaces connecting WP3 and
WP4 developments that will be integrated in WP5, together with the upper (intent) and lower
(infrastructure) layers enabling the application of the FISHY framework.

1.3 Structure of the document

The document is structured in the following chapters.

Chapter 2 introduces the overall principles of the FISHY architecture and puts the TM in its context.

Chapter 3 addresses the initial design of the TM, describing the design of each one of the blocks in the
TM architecture, including their interfaces and relevant workflows.

Chapter 4 describes the base tools to be applied and how they have to be adapted to be applied in the
FISHY framework.

Finally, Chapter 5 provides some conclusions about the results reported in this document.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 11 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

2 FISHY platform architecture

The FISHY platform architecture is being developed in task 2.3 of WP2, and a deliverable, D2.2, will be
release in M12 with the FISHY architecture for IT-1. However, a preliminary version of the FISHY
architecture has been described in the Internal report on the Architecture for IT-1 in M7 (MS7).

This preliminary version of the FISHY architecture is based on the architecture presented in the FISHY
proposal and shown in Figure 1. The FISHY platform is divided into four main blocks: Trust Manager
(TM), Security & Certification Manager (SCM), Intent-based Resilience Orchestrator & Dashboard (IRO)
and Secure Infrastructure Abstraction (SIA).

The Trust Manager (TM) is designed and implemented in WP3 and will be described in detail in this
deliverable. In summary, this component is in divided into two blocks, the Trust & Incident Manager
and the Security & Privacy Data Space Infrastructure. The Trust & Incident (TIM) manager provides the
tools for assessing the security of the stakeholder’s device, component or/and system. The Security
and Privacy Data Space Infrastructure (SPI) is responsible for the collection and storage of data
generated from the devices, processes and components of the stakeholders’ ICT systems being part of
the supply chain.

WP4 is in charge of designing and implementing the two blocks within the SCM, namely, Enforcement
& Dynamic Configuration (EDC) block which is responsible for making the entire system cyber resilient,
even when including potentially insecure components, based on the concepts of dynamic self-
configuration. The Security Assurance and Certification Management (SCM) which is responsible for
the provision of auditable, evidence-based evaluation and certification of the assurance posture of
complex ICT systems, based on identified security claims and metrics, setting the roots for the
definition of a pan-European process for certification of devices, processes and systems, as required
in today’s in the European market.

Figure 1. Initial FISHY architecture

Finally, in WP5, the components in the architecture shown in the top and the bottom of Figure 1 will
be developed. The Intent-based Resilience Orchestrator and Dashboard (IRO) block, shown at the top
of the figure, is designed to work as the user-centric interface to translating and to orchestrating input
actions into intents, to be used by other components. And the Infrastructure Abstraction (SIA) is the
infrastructure-centric interface and works as a data interface between different Edge/IoT or Cloud
infrastructures and FISHY platform.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 12 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

With the help of the use cases needs and requirements, the work in T2.3, in these first months of the
project, has been the mapping between the described blocks and the different areas where FISHY will
be deployed. These action areas are described as follows and shown in Figure 2:

• Organization: defined as the company, the supply chain consortium, the law enforcement, etc.

• Realm: defined as the environment from cybersecurity perspective, with same policies, rules,
etc.

• Domain: a group of assets with certain relationship (same network, infrastructure, location,
etc.)

In Figure 2, only different domains inside realm 1 are shown, but in general in a realm there can be
one or more domains, and in each organization we can have only a realm or more than one realm.
Even, the whole supply of chain can be composed by different organizations, the example in Figure 2
contains two possible organizations.

Figure 2. Action areas in FISHY

This mapping between FISHY components and action areas in FISHY is shown in Figure 3, where we

observe that there are some components, such as the IRO, the TIM and the SCM, that are logically

centralised. We consider that these centralized components will be a third-party service located at

cloud (FISHY control services). Whereas there are other components, such EDC, SPI and SIA that will

be replicated in each one of the domains, because they are directly connected to the infrastructure.

With this deployment of FISHY components in the different organizations, realms, and domains, and

taking into account the blocks in WP3, the TIM will be centralized, instead the SPI will be deployed in

each one of the domains.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 13 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 3. Mapping between FISHY components and action areas

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 14 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

3 Design

The next table presents a summary of the internal blocks and modules for Trust Manager. Each of them
is detailed in following subsections, and in the corresponding ones in Section 4.

Table 1: Summary of TM internal architectural blocks and modules

Block Module
Functionality Interface

with
Workflow Tools

SPI

Identity Manager Any internal
FISHY
resources

Figure 5

Figure 6

Figure 7

OpenID
Connect

Access Policy XACML –
JSON
Profile

Data Management /
Adaptation

Access
management.
Syntax and
access method
adaptation

All potential
data sources

Data
consumers:
IRO, SCM,
TIM

Figure 11

5Growth
SDA,

NGSI-LD
Context
Broker,

Kafka,

NiFi,

Flink

Data Management /
Anonymization

Personal data
filtering
and/or
obfuscation

TIM

Vulnerability Assessment Figure 14 RAE

Incident Detection XL-SIEM

Attestation Infrastructure
remote
attestation

IRO, SIA, and
infrastructur
e

Figure 16 Trust
Monitor

Impact Assessment Figure 18 Figure 17 RAE

Mitigation Mitigation
mechanisms
based on ML
algorithms
which based
on patterns of
behaviours
detects
anomalies and
classifies
them.

IRO, Threat
repository

Figure 19 PMEM

Threat/Attack Repository Figure 20 Relational
database

Pub-sub

Smart Contracts Ethereum

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 15 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

3.1 Security & Privacy Data Space Infrastructure

The SPI module aims to provide an interface between the low-level components (implemented within
SIA) producing data related to metrics in general, and the higher-level modules that use those metrics
(implemented within TIM and SCM). According to the analysis already done over the use cases and the
requirements of the tools involved, we envisage the possibility of having two different types of low-
level devices: those that are controlled by FISHY itself (implementing security functions specified EDC
and enforced by SIA), which we refer as white boxes (WBox); and those that are not controlled by
FISHY, allowing only monitoring, which we refer as black boxes (BBox) – Figure 4 shows the general
workflows for both cases. Concerning the BBox case, the monitoring tools can be deployed in the
infrastructure itself, or at the SIA level. The data interface (DInt) needs to handle any required data
transformation (including format normalization and anonymization, when applicable – performed by
DMng) as well as the enforcement of the Access Control rules established (performed by AC_IdM). The
next subsections go into more detail in describing how these blocks interact for forwarding the relevant
data, applying the appropriate access control mechanisms, and acting to preserve privacy.

Figure 4. General SPI workflow

3.1.1 Access Control

FISHY is (will be) a modern distributed application. This means it will be highly modular, requiring a
carefully designed Access Control (AC) unit. Among the available solutions OpenID Connect (OIDC) [1]
is a de-facto standard widely used in similar software architectures, based on RESTful technology. It
basically consists of a centralized authorisation server implementing the OAuth2 standard,
complemented by an authentication layer based on the OpenID standard.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 16 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

OpenID Connect implements a centralized authentication system, initially requiring servers and clients
(software modules) registration, when unique ID and shared key are generated. The protocol specifies
the mechanisms to get Access Tokens (AT), which are tickets to allow access to software services.
Those mechanisms are referred to as Flows. The OpenID protocol is used to enforce authentication on
those flows through an extra set of operations. Each flow corresponds to a possible scenario involving
(all or in part):

• A user (data owner).

• A client (as Relying Party -- RP) that needs to access the data on behalf of the user, but that
does not know him/her.

• The Authorisation Server (AS).

• Another client that provides data (Resource Server - RS)

Among all possible flows, in the case of the FISHY project and taking preliminary discussions on the
requirements, there are three main flows to consider:

• Client Credential Flow – when the client is the “resource owner” (no need to get user
authorization). This is a typical machine-to-machine (M2M) scenario, which is the case when
dealing with CLIs, daemons, or services running on the backend (see Figure 5).

• Authorisation Code Flow – this is the typical case when the client is a server-side application.
The user (typically through a browser or App) first triggers the login process within the client,
which calls AS to authenticate the user and to validate the request. Eventually the AS will
redirect the call to a third-party authentication system (when using a Federated Identity
provider). In case of success, the AS returns an Authorisation Code to the client. Next, the
client will ask the AS to provide the Access Token, passing its ID and secret key - that is why
this flow should only be used with server-side clients since their code and the key will never
be exposed - (see Figure 6).

• Resource Owner Password Flow – a special case of the previous one, when it is not possible
(or desirable) to redirect the user for authentication and there is absolute trust in the client
capacity to keep (safely) user credentials. This is frequently considered a poor security practice,
but may provide a very effective programming practice, if client trust is very high. When
dealing with IoT and machine-to-machine architectures (which is the case with FISHY),
sometimes this is the only possible way to deploy AC. But it should never be an option when
dealing with third-part clients (see Figure 7).

Figure 5. Client Credentials Flow

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 17 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 6. Authorization Code Flow

Figure 7. Resource Owner Password Flow

All information transactions pertaining to the Identity Management operation are performed using
JWT (JSON Web Tokens) [2], which is a data structure widely spread by the software community to
provide authentic (signed) claims between parties, specifically when using RESTful solutions.

But any AC solution requires as well proper Data Management and policy enforcement functions. Data
Management must assure data is formatted and categorised in the correct way, according to system

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 18 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

requirements. Following good practices and standards, data should be classified by critically and a
domain-origin dimensions, besides other possible attributes. Those attributes are essential to define
privacy related functions and access rules, which will be detailed in the next subsections.

3.1.2 Identity Manager

Within the Cyberspace, Digital Identity (we will refer to it just as ID), embodied by our credentials and
associated characteristics, has taken on an increasingly important role. Access Control is the gateway
to this world. But unlike the real world, in Cyberspace we can (and usually do) have multiple IDs. Those
IDs may share some attributes with real personas, but can also create completely different
personalities, according to the context and including privacy concerns, among other possible
motivations. But in the end, behind all IDs, there are real subjects who will be accountable for what
their IDs do (hopefully!).

With the increased criticality of all activities in Cyberspace, ID management (IdM) -- also referred by
IdAM (Identity and Access Management) -- has become a priority. Standardization organizations have
produced frameworks for this area [3]. In Europe some initiatives have been promoted, such as the
Scoping the Single European Digital Identity Community (SSEDIC) [4] -- also to propose a framework
for the management of IDs to be applied in all European countries --, the FutureID1 infrastructures
project, or the PICOS2 project, and not forgetting the eIDAS regulation. And even NATO, through its
Information Assurance Product Catalogue (NIAPC), created a Security mechanism Group (SG05)3
dedicated to this topic. All these activities were also fuelled by the increase in cybercrimes related to
identity theft, fraud, and privacy breaches, and its impact on citizens, in general.

The work around those frameworks generated some new concepts, besides those of ID and IdM:

• Service Provider (SP), is an organization that provides an information service over the Internet;
with more or fewer requirements, the SP demands an authenticated ID before delivering the
service.

• Digital Identity Provider (IdP), is a specific service provider, which handles user authentication
for several users and SPs. There are several ways of delivering this service, mainly concerning
the way authentication is performed, and four models emerged along the research done:

o Credential Identity Service, are those using as credentials some formal resource, like
certificates.

o Identifier Identity Service, are those using any user identification, such as the
username, an email address, an ID card number, or something equivalent.

o Attribute Identity Service, are those using any type of attribute that describes the user
identity, like residence address, age, contact information.

o Pattern Identity Service (less frequent), are those using patterns, usually related to
user reputation or recognizance from others (humans or systems), like honour, trust
records, or history access records.

We may find systems using more than one type of identifier, of course. Sometimes it is not
easy to map one of the above types. Anyway, the decision about what to use and why, should
always be based on the trust and security levels within the target environment.

Besides the type of identity information used, an IdM can also be categorized by the implementation
model. The chosen model has a substantial impact on architectural decisions concerning the
development of an Information System that uses an IdM:

• Isolated Model, the SP and IdP functions are kept together in one server, and there is no
sharing across domains. This is the simplest case (and more frequent), where administrators

1 https://cordis.europa.eu/project/id/318424 [3]
2 http://picos-project.eu
3 See also https://www.ia.nato.int/niapc/SecurityMechanismGroup/Identity-Management-and-Access-Protection

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 19 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

have full control over IdM operation. The biggest drawback is forcing users to have specific
credentials for each SP they access. As already mentioned, this situation pushes users to use
the same credentials in several SPs and to choose simple passwords that are easy to
remember. Clearly, this model has scalability issues.

• Centralized Model, the SP and IdP functions are separated, and credentials are stored in the
IdP. But they are both local, and there is no cross-domain sharing. This way, the Centralized
Model share with the Isolated Model the same advantages and drawbacks, except the
possibility to use the same credentials to all SPs that are local. The classic example is the
Kerberos system.

• Federated Model, contrary to the above models, this one aim to address the cross-domain
operation. It uses protocols and standards to establish agreements between groups of SPs and
a remote and independent IdP (operated by a third party). There are a number of well-
established technologies to support the Federated Model [5].

3.1.3 Access Policy

Traditionally, Access Policies are developed with the purpose of defining a set of conditions that should
be satisfied to grant a subject the access to a desirable object. When designing a system for access
control, three elements should be considered [6]:

• Security policy: it defines the general rules governing all information access requests.

• Security model: it provides a formal representation of the access control security policy and
how it works.

• Security mechanism: it defines the low-level (software and hardware) functions that
implement the controls imposed by the policy and formally stated in the model.

Regarding to access control models, the available literature refers several different models, each one
with specific characteristics and focus. Working with these models, it is possible to implement
attribute-based access controls (ABAC), discretionary access control (DAC), mandatory access control
(MAC); role-based access control (RBAC); organization-based access control (OrBAC); usage control
(UCON), besides some other variants that explore specific subject's characteristics and rules
enforcement points.

The implementation of these models should take into consideration the architecture designed and at
the same time be supported by a standard as a guide for best practices. In this approach, three
implementation possibilities arise, an architecture based on XACML, an architecture based on token,
or a hybrid architecture that can some the best of both worlds.

The EXtensible Access Control Markup Language (XACML) [7] is an open standard for access control
architectures, responsible for the management of rights, evaluation, and the enforcement of access
policies. XACML traditionally is based on ABAC model which means that the attributes of entities will
be used to authorize or reject an access. This architecture is characterized by four main components[8]:

• Policy Enforcement Point (PEP) provides an interaction system and is responsible for enforcing
access decisions.

• Policy Decision Point (PDP) evaluates access re-quests against access control policies and
determines whether access should be granted or denied.

• Policy Administration Point (PAP) acts as a policy repository and provides resources for policy
management.

• Policy Information Point (PIP) denotes the source of information (for example, context
information) needed for policy evaluation.

As it can be seen in the figure below, PAP provides policies for the PDP (1). Upon receiving an access
request (2), the PEP forwards the request to the PDP (3), which evaluates the request in relation to the
policies obtained from the PAP. If additional information is needed for the evaluation, the PDP

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 20 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

questions the PIP (4;5). The PDP evaluates the request against the policies and returns a response
specifying the decision to access the PEP (6), which enforces the decision.

Figure 8. Policy-based Architecture

OAuth2 [9] is the most recent and used application of a token-based architecture. Token-based
authentication works by ensuring that each request to a server is accompanied by a signed token that
the server checks for authenticity and returns a response to the request. The standard model for
implementing this architecture is OAuth2, which defines four roles, as shown in Figure 9:

• Resource owner: An entity capable of granting access to a protected resource. When the
resource owner is a person, it is referred as an end-user.

• Resource server: The server hosting the protected resources, capable of accepting and
respond to resource requests through access tokens.

• Client: An application that makes requests on behalf of the resource owner and with its
authorization. The term "client" does not force any particular implementation characteristics
(e.g., whether the application executes on a server, a desktop, or other devices).

• Authorization server: The server issuing access tokens to the client after successfully
authenticating the resource owner and obtaining authorization.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 21 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 9. Authorization Protocol Flow

Solutions adopting a policy-based architecture typically provide a single, centralized point for the
evaluation and enforcement of access control policies. This solution may not be suitable when
resources are distributed across different nodes, which is a typical situation in many IoT applications.
In the case of FISHY, which is a distributed system, it seems better to implement a hybrid model, where
we will use the standard XACML as a base, plus an authentication process based on JSON Web Token.
JSON is characterized for being a lightweight and relatively easy to work format that should be
integrated with XACML to provide a standardized interface between the PEP and the PDP structuring
the request and response task.

3.1.4 Data Management

3.1.4.1 Adaptation

Adaptation elements will act as transformer functions, mapping the raw data received through the
infrastructure abstractions and the edge elements onto data structures able to include all necessary
attributes to support both functional and non-functional system requirements. The non-functional
requirements are typically related to performance and security functions, including the privacy and AC
policy rules. The functional requirements are related to the main FISHY functions comprising security
events and related operational data. Higher level modules, especially those already available will
naturally impose data format requirements and, possibly, data cleaning and aggregation demands.

3.1.4.2 Anonymization

The concept of anonymization is frequently associated with data and refers to the personal data
conversion process into “anonymized data” by the application of a range of techniques with the main
purposes of preserving privacy of users and complying to regulatory requirements. The anonymization
process can be reversible or irreversible and, in this project, it focuses on shared data among
organizations or entities, where additional administrative and technical controls may need to be
imposed in order to reduce the risk of unauthorized disclosure of personal data. This process has no

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 22 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

ideal solution to all cases, so it must be adapted to select the most adequate approach for the
circumstances.

There are some elements that should be taken into consideration when determining a suitable
anonymization technique and an appropriate anonymization level. The purpose of anonymization
should be clear, especially under the consideration that anonymization tends do decrease information,
so when the anonymization impact increases the utility of the dataset decreases. Another important
element is inferred information, the possibility for certain information to be inferred from anonymized
data. The expertise with the subject matter is also an element to be considered since the
anonymization techniques usually reduce the risk of identifiability to a level acceptable by the
organizational risk portfolio but that can imply a degradation of the value of data for subject experts.

As said before, there is no ideal technique for all cases, so the anonymisation process should apply
different techniques regarding to every specific situation with the purpose of reducing the risk of
disclosure of personal data. The most common data anonymization techniques are:

• Attribute or Record Suppression – This technique refers to the removal of a section of data
(e.g., a column in a table) or the removal of an entire record in a dataset. This technique is
applied when an attribute is not needed in the final anonymized dataset and it is an easy way
to decrease identifiability at the beginning of the anonymization process.

• Character Masking – This technique refers to the change of the characters of a data value using
a constant symbol. Typically, the masking technique is only partially being applied, only to
some characters in the attribute, and it is used when hiding part of a record is sufficient to
provide the extent of anonymity required.

• Pseudonymization – This technique refers to the coding or replacement of identifiable data
with made up values and it is applied when the data values need to be uniquely distinguished
and where no character of the original attribute should be kept.

• Generalisation – This technique refers to a deliberate reduction in the precision of data or
recoding, it is applied to values that can be generalised and still be useful for the intended
purpose.

• Swapping – This technique aims to rearrange data in the dataset such that individual attribute
values are still represented in the dataset but do not correspond to the original records, this is
applied only when there is no need for analysing relationships among attributes.

• Data Perturbation – This technique is characterized for slightly modifying the values of the
original dataset and it is applied when quasi-identifiers may potentially be identified when
combined with other data sources.

• Synthetic Data – This technique refers to the generation of synthetic datasets directly and
separately from the original data, instead of modifying the dataset.

• Data Aggregation – This technique refers to the conversion of dataset from a list of records to
summarised values. It is usually applied when records are not needed, and the aggregated data
is sufficient for the purpose.

3.1.4.3 Data Infrastructure

The Data Infrastructure proposed for FISHY is intended to support the collection and sharing of the
diverse data produced by the different components, from the individual network elements and devices
to events and knowledge as produced by elements higher in the policy enforcement hierarchy. In
particular, it is committed to provide a common, model-driven approach able to addresses the
following goals:

• Capacity to collect and forward the diverse information to be exchanged within the FISHY
architecture.

• Support for the integration of heterogeneous formats for log data, events and alarms,
knowledge sharing, policy expressions, etc.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 23 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

• Incorporate the capacity to process (by extracting, transforming, and selecting) relevant
information (i.e., alerts from events, errors from info, flows from samples…)

• Mechanisms for adaption and enrichment of data sets: label data, format unification,
anonymization.

• Open interfaces suitable to be used by the different FISHY components consuming data flows,
irrespectively of their nature: TIM, IRO, SCM...

Figure 10. Data Infrastructure architecture

The FISHY Data Infrastructure, as shown in the figure above, is built by the composition of data
forwarding (Data Fabric) nodes that connect different Data Sources (providing raw data to the Fabric
nodes), Data Consumers (using the data forwarded by the Fabric nodes) and Data Processors (acting
as Consumers for a Fabric node, and Sources for a following Fabric node). Sources, Consumers (and
Processors, in their double-sided role) are described according to a metadata model, describing the
characteristics of the data flows they produce and consume in terms of access method, data models,
permissions and verification mechanisms. Fabric nodes use the metadata of the attached Sources and
Consumers to collect data, combine, transform, and forward them. Processors are used to apply
transformations on the data flows that required specific capacities or additional information.

The Data Infrastructure is the backbone of the SPI, in charge of data transformation and forwarding
Northbound within the FISHY architecture. The Data Infrastructure mechanisms will apply metadata-
based enforcement of access control, assessment on data provenance, and the mechanisms to
guarantee privacy preservation, as described in the sections above. The metadata-based approach
supports an open management of Sources and Consumers, and the dynamic orchestration of data
flows.

The following workflow illustrates the process for registration and process of Sources and Consumers
at a Fabric node, as well as their further interactions. Note the adaptation process implies there is not
a necessary one-to-one mapping between the dataflow elements sent by the Source and those
forwarded to the Consumer.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 24 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 11. Data Infrastructure Workflow

3.2 Trust & Incident Management

The TIM module is responsible for assessing the security posture of the monitored infrastructure,
detection of anomalous events, assessing the impact of present vulnerabilities and incidents and
providing actions and recommendations for mitigation of cybersecurity risks. Facilitating the analysis
and assessment of the cybersecurity status of the monitored infrastructure is the FISHY Appliance,
enabling the deployment and configuration of the various metrics-gathering tools that forward data
to the analysis components of TIM. The deployment and configuration of tools will be performed by a
managing component referred to as FISHY Agent remote configuration scripts [10]. The suite of tools
to be deployed and their configurations on each node of a supply chain will be derived from the intents
and policies TIM receives from IRO. The proposed flow of this operation is presented in Figure 12. The
Appliance is situated in the lower domains of FISHY architecture, close to the monitored infrastructure,
along EDC, SPI and SIA.

Figure 12. Sending metrics to TIM

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 25 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

The outputs of tools will be collected by the FISHY Agent and forwarded to the SPI component for data
normalisation, anonymisation and secure transmission back to TIM, where the gathered metrics are
first saved in the Threat/Attack Repository and then processed and analysed. The results of the analysis
of the gathered data are again saved in the Threat/Attack Repository, where they are made available
to components able to take mitigation actions as input and provide new intents and policies that can
be applied to the monitored infrastructure by the EDC.

3.2.1 Vulnerability Assessment

The aim of the Vulnerability Assessment component is to provide a proactive, rather than reactive,
assessment of the security status of a given network and/or infrastructure. The inputs of the various
metrics gathering tools are collected, analysed, and stored for further review and based on the results
of the analysis, recommendations are issued on how to harden the system or network and increase its
security level.

The Risk Assessment Engine (RAE) is a Python-implemented tool of ATOS that can perform vulnerability
assessment thank to its incorporated vulnerability scan. RAE can gather data, that is, indicators, from
the monitoring of the targeted infrastructure. After performing the vulnerability scan, a report is
generated by RAE. This is done with the purpose of updating the indicators associated to the
vulnerabilities that are detected in the monitored platform. The workflow is expected to be like the
one depicted in Figure 13:

Figure 13. Vulnerability assessment, exemplified with RAE

In addition, the format of the vulnerability reports is indicated in Figure 14:

Figure 14. Format of the vulnerability report by RAE

Regarding the communication mechanisms the REST API employed in the architecture of RAE
guarantees security, given that HTTPS is chosen to secure all requests. OAuth2 is used with the purpose

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 26 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

of authenticating requests so everyone will contain an access token. According to good security
practices, access tokens also need to be renewed after a certain amount of time, so it is necessary to
use a refresh token to be granted a new, valid access token.

Finally, the following use cases define different approaches for the vulnerability assessment
performed:

Assessment of web page vulnerabilities

Description
The Vulnerability Assessment Tool performs checks for exploitable
vulnerabilities of a web page using W3AF – Web Application Attack and Audit
Framework [11] and OWASP Zed Attack Proxy [12].

Actors Vulnerability Assessment, Impact Assessment, Threat/Attack repository.

Inputs Inputs are received from the Vulnerability Assessment Tool.

Outputs
The processed data is passed to RAE for further analysis and/or the
Threat/Attack repository for storage.

Infrastructure scans

Description
The Vulnerability Assessment Tool performs NMAP scans of a target machine or
network and produces a report about server availability and open ports.

Actors Vulnerability Assessment, Impact Assessment, Threat/Attack repository.

Inputs Inputs are received from the Vulnerability Assessment Tool.

Outputs
The processed data is passed to RAE for further analysis and/or the Threat/Attack
repository for storage.

Infrastructure monitoring

Description
Wazuh [13] collects monitoring reports and generates alerts based on input gathered
from agents running on the target infrastructure.

Actors Vulnerability Assessment, Impact Assessment, Threat/Attack repository.

Inputs Inputs are received from Wazuh.

Outputs
The processed data is passed to RAE for further analysis and/or the Threat/Attack
repository for storage.

Target infrastructure scan

Description
RAE executes a vulnerability scan on the monitored platform: it is aimed at
gathering information about the whole infrastructure.

Actors Vulnerability Assessment, Threat/Attack repository.

Inputs
Inputs are provided by sensors and scanners deployed on the monitored
platform.

Outputs
Outputs are correlated with information of the platform provided by the user
(with the help of a questionnaire). This is part of the information needed to
estimate how vulnerabilities could impact data on the monitored platform.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 27 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Risk assessment

Description RAE performs a Risk Assessment of the monitored infrastructure.

Actors Vulnerability Assessment, impact assessment, mitigation.

Inputs
RAE receives information of vulnerabilities found. Besides, the user can provide some
data about infrastructure components.

Outputs
Once the Risk Assessment is performed and based on the results obtained, RAE
proposes some mitigation measures.

3.2.2 Incident Detection

Incident detection is a challenging task. It demands on information, ability to recognize patterns and
new threats as well as skills to deal with different scenarios and situations. In a market environment,
companies struggle to identify and recognize incidents and often this leads to a delay on the response
to these incidents. Part of the key to be successful comes from gathering, filtering, and obtaining
proper information from raw security data. However, the key to be successful regarding incident
detection may lay on adopting an adequate security posture, something that can be associated with
good security practices such as continuous monitoring. In this sense, the ability of being pro-active in
terms of detecting and mitigating threats and adapting to continuous environment changes are key
factors.

In that scenario, monitoring tools such as the Security Incident Event Management (SIEM) tools can
help to achieve a holistic approach in cyber incidents detection. The SIEM just normally needs to
integrate with the sensors, that is, to receive information sent by them. There are several kinds of
sensors designed to monitor all sorts of components and detect security incidents.

Finally, we consider that the following use cases provide an insight into incident detection related to
FISHY platform:

Infrastructure supervision and event detection

Description
XL-SIEM deploys agents on the target infrastructure: they are responsible for the
gathering of information and processing of security events.

Actors Incident detection, Threat/Attack repository.

Inputs
Information provided by agents and sensors gathering data provide valuable incident
input.

Outputs
Once an incident is recognised, data is sent to the threat and attack repository where
it can be stored for future use.

Incident mitigation

Description
XL-SIEM detects a security incident based on information provided by agents
and sensors.

Actors Incident detection, mitigation.

Inputs
XL-SIEM provides correlated and refined data regarding the input detected.
Information of previous attacks and threats which is stored in the threat/attack
repository can be used as well.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 28 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Outputs

The mitigation component can deal effectively with the incident given that
information has been previously prepared and processed. Active
reconfiguration of the infrastructure is managed by means of accurate
mitigation strategies provided by FISHY.

3.2.2.1 Trust Monitor

The Trust Monitor (TMon) is in charge of verifying the integrity of the software running on both
infrastructural nodes and containers. To assess the software's posture, the TMon leverages periodic
Remote Attestation (RA) and a hardware-based Root-of-Trust (RoT), which in this case is the Trusted
Platform Module (TPM). During the attestation process, a Verifier inside the TM queries an Attester
(Trust Agent) running on the infrastructural node. The latter is in charge of providing the Verifier with
measures related to the software we aim to attest. Those measures are certified by the RoT of the
target node. Figure 15 represents a high-level sequence diagram of the attestation process integrated
within the FISHY architecture.

Figure 15. Remote attestation workflow

The TMon periodically sends an Attestation Request to the Attester within the infrastructural node,
receiving as response an Integrity Report (IR). This report contains the measures of the binaries running
on the target node certified by the RoT. TMon verifies those measures against a whitelist of golden
values and reports the Integrity Status of the node to the IRO. When an integrity violation occurs, TMon
also sends a report regarding the violation to the Mitigation module within the TIM. This latter must
produce specific intents as remediation for the event. Those intents are forwarded to the IRO, which
is in charge of transmitting them to the Enforcement & Dynamic Configuration (EDC) module upon a
system administrator approval in the form of high-level security policies. This step triggers the
refinement and the enforcement processes to apply the mitigation.

Eventually, the attestation process could also be triggered on-demand by the IRO. This allows for the
asynchronous check of the integrity status of the platform in critical moments of its lifecycle, i.e. when
a new service must be deployed.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 29 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 16. High-level Trust Monitor architecture

Figure 16 depicts a high-level architectural view of the Trust Monitor adapted to the scope of the
project. In particular, the TM is composed of six different submodules:

• Attestation Drivers: a collection of attestation drivers is available to provide integrity
verification of heterogeneous hosts (e.g., compute nodes) and virtual instances (e.g.,
containers). The main idea is to leverage several frameworks for the remote attestation
process depending on the host to be attested and the virtualisation technologies adopted.
Specific attestation drivers could be developed to interact with attestation frameworks
following a specific logic imposed by the Verifier in order to validate the Integrity Reports.

• Verifier: this is the main module that receives the integrity reports, validates them, and
compares their values with golden measures stored in the white-list database.

• Audit Database: this database contains data regarding the results of the attestation processes.
External components could use these data to collect historical data about the trustworthiness
of the infrastructure.

• white-list database: compute nodes and virtual instances within the infrastructure shall own a
related white-list of golden measures. The white-list database is in charge of storing those
white-lists.

• Notification & reporting connectors: this is an abstraction of the interfaces that should be in
place to report special events related to the integrity verification process. In particular when
an event occurs (i.e., a node becomes untrusted), the Verifier could notify external
components of this event using this submodule.

• Attestation & management APIs: this represents a set of APIs built for requiring the attestation
of specific nodes or instances. In addition, an API for configuration and management is in place.

TMon is agnostic to the underlying technologies used for the RA. In particular, TMon could be extended
with specific Attestation Drivers that abstract the low-level operations depending on the type of host,
the virtualisation technology, and the choice of operating system. So far, TMon has been extended to
support Docker container attestation. This allows TMon to establish on a bare-metal infrastructural
node which one of the containers has been compromised. Leveraging this information, it is possible to

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 30 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

address mitigation towards a single container without requiring the isolation of the whole
infrastructural node.

A general use case scenario is represented by the integrity violation of an infrastructural node by
modifying or adding software for malicious purposes. In our system, the TMon periodically queries the
Attesters asking for IRs. When a binary related to a specific software is modified, the next round of the
attestation process must detect it. In particular, the TMon starts the RA process and collect the IRs
from the Attesters. At this point, the Verifier within the TMon can compare the measures of the
binaries with the whitelists that it stores within its database. When it validates the measure of the
compromised binary, it detects the violation and informs the mitigation module. This latter is in charge
of providing specific intents to the IRO to mitigate the attack. Ultimately, the IRO, upon approval from
a system administrator, could then send the high-level security policies to the EDC, starting the
refinement process and the enforcement of the mitigation policies.

Possible mitigations in this scenario could be the isolation of the compromised node or container. Two
real use case scenarios could be the following ones:

• Botnet use case: attackers find a vulnerability in nodes, and they use it to install malware to
take remote control of the nodes themselves. The controlled nodes are now part of a botnet.
At the moment, they are still quiet, but they could be used at any time to launch a large-scale
attack, for example, a denial of service (DoS), against unknown targets. At the next
programmed nodes attestation, the anomaly is detected and reported through the Fishy
dashboard (IRO) to the system administrator as a series of intents that he could apply as
mitigation. Possible remediation could be shutting down the vulnerable nodes and restart
them using an image patched to fix the vulnerability.

• Cryptominer use case: attackers find nodes vulnerable to malware installation and take
advantage of the situation using them for cryptomining. After the next attestation round, the
system administrator receives a report about the failure of the RA process. The report he
receives back notifies him about compromised nodes and possible mitigation in the form of
intents. He decides to apply them shutting down the compromised nodes to analyze the
attack.

To summarize the role of TMon, it periodically attests the infrastructure and could also be driven by
the IRO module for on-demand attestation. It starts the attestation process, taking in input the IRs
coming from the Attesters and provides in output a report in JSON format about the status of the
infrastructure. In case of Integrity Violation, it sends a notification to the Mitigation module which in
turn provides intents to mitigate the breach.

3.2.3 Impact Assessment

The general idea of the impact assessment is the quantification on how risks and, more specifically,
changes can influence a system.

Given that the FISHY project is aimed at helping heterogeneous supply chain infrastructures, there are
plenty of variables which can sway it. While the objective is to make the ICT infrastructure resilient to
external factors, various tools and approaches could help achieving this goal. One strategy could be to
have support of automated-assessment tools that can provide cybersecurity and threat information
such as risks, vulnerabilities, changes, and any other external driver affecting the monitored
infrastructure.

The impact assessment is a key process to be performed on the FISHY project. This activity is
accomplished in the Trusted Incident Manager of the Trusted Manager (or TM). It should draw from:

• A previous vulnerability assessment of the. As it has been described on the vulnerability
assessment section, Risk Assessment Engine (RAE) can effectively perform this vulnerability
analysis of the target system.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 31 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

• A provided list of incidents.

• It could be also a good idea to check the threat/attack repository (depending on the scenario).

Based on our knowing of its capacities, on a simple approach, we suggest the use of the RAE. However,
there are multiple tools that can be used for the purpose of dealing with impact assessment. On a
scenario where RAE is the chosen tool to be used, we propose the workflow depicted in Figure 17:

Figure 17. Impact assessment, exemplified with RAE

3.2.4 Mitigation

3.2.4.1 ML-Based Solutions

These solutions focus on the detection of anomalous behaviour by the network and IoT systems based
on the analysis of monitoring data through Machine Learning algorithms. Mitigation mechanisms
based on ML algorithms use to work in two different ways: online mode and offline mode.

Offline mode: A Database/Repository of the net entries is read. Based on these data, an expected
behaviour pattern is established for the devices to be protected.

Three main components are defined:

• The first component aims to perform a binary classification to detect anomalies (system
entries are benign or anomalies).

• The second component identifies the type of anomaly that has occurred, to be able to issue a
warning message, so that corrective actions can be carried out.

• If the type of anomaly was not classified, there is a third component which, through
unsupervised machine learning techniques, establishes a possible categorization of the
anomaly. Figure 18 shows these components.

The models used for detecting anomalies and categorizing are adjusted offline. Once the models have
been trained, the online mode can be used.

Online mode: A user interface monitors system data to detect attacks. This interface uses the above
mentioned selected fitted model that has been trained offline.

Figure 18 also shows the interdependence among the components and the two modes.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 32 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 18. ML-based mitigation workflow

3.2.5 Threat/Attack Repository

FISHY will also provide a threat/attack repository facilitating data interoperability among the different
stakeholders in the supply chain aimed at improving both estimation and mitigation actions. The
Threat/Attack Repository will store the outcome of the Trust & Incident Management layer whenever
the analysis leads to a threat or attack. Based on the immutability principle, the Repository will store
the result, so that other stakeholders can be timely informed, and that information can be used for
evidence.

A practical example of the Threat/Attack repository interacting with other components is presented in
Figure 19.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 33 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Figure 19. High-level workflow involving the Threat/Attack repository

The Threat/Attack repository should be implemented as a database or document store with a REST API
wrapper layer that exposes the ability to perform CRUD operations without direct access to the
underlying storage service. Additionally, the REST wrapper should also implement a pub/sub
mechanism, allowing components that interact with it to receive near real-time updates when changes
to entities occur. The pub/sub mechanism can be implemented by using existing solutions, most likely
a combination of a message queue service like RabbitMQ [14] or Redis [15] and websockets that push
updates and notifications to the user interface.

3.2.6 Smart Contracts

The main goal of the Smart Contract (SC) module is to offer an immutable mechanism within the FISHY
platform for storing and retrieving information, in a secure manner, related to threats and attacks,
including logs and events with specific information that can be used across the supply chain. This
component, based on Distributed Ledger (DL) technologies, will be properly adapted to the specific
needs of the supply chain use cases that FISHY deals with and beyond.

The SC component includes three main (groups of) components namely the Relay Server, the Event
Server and a collection of generic and FISHY specific smart contracts acting as distributed applications
(DAPP) on top of the supporting DL system.

The entry point of the SC will be the Relay Server, a web service serving RESTful HTTP requests from
the SC clients and interacting for their interest with the DL infrastructure through the web service in
charge of guaranteeing the temporal succession of events, the Event Server. This interaction may be
either in the form of interacting with DAPPs or mediating simple requests against the basic features of
the underlying DL. For each of the two modalities, a separate RESTful API category will be exposed.

In the case of simple ledger requests, functionalities would include querying about the current block
number, the list of transactions included in a block, the list of logs associated to a transaction, etc.

Figure 20. FISHY Smart Contract sub-modules

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 34 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

3.3 Metric Gathering

In the white box mode described in section 3.1 the capacity of generating metrics under the control of
the FISHY framework was introduce. Usually, metrics are described as quantifiable measurements of
any specific characteristic of a system, or a product and they can only be established if there is a well-
defined objective. While metrics can be seen as quantifiable measures, the measurements provide
specific information since they are generated nominally [16].

The definition of security and privacy metrics is essential to assist the decision-making process related
to aspects of data security and privacy. Metrics are also important in the design phase of the security
architecture till the development of controls to the effectiveness and efficiency of security operations.
These can be used throughout the entire software development lifecycle (SDLC) to recognize and
eliminate vulnerabilities that may exist. In addition, metrics can help to identify, analyse, and fix
security flaws and, therefore, increasing the effectiveness of security and privacy controls.

One simple classification is to consider metrics that represent the maturity level of the most valuable
processes that secure the system [17]. Since the Software Engineering Institute has launched the
Capability Maturity Model (CMM) many maturity models have been suggested by specialists across
multiple domains to diagnose and eliminate inadequate capabilities. Maturity models usually include
a sequence of levels that together form an accurate and logical path from an initial state to maturity
that in the end will indicate an organization’s current or desirable capabilities. In practice, maturity
models are expected to expose current maturity levels and to include respective improvement
measures following application-specific purposes which may be for example:

• Descriptive purpose - "if it is applied for as-is assessments where the current capabilities of the
entity under investigation are assessed with respect to given criteria".

• Prescriptive purpose - "if it indicates how to identify desirable maturity levels and provides
guidelines on improvement measures".

• Comparative purpose - "if it allows for internal or external benchmarking. Given sufficient
historical data from a large number of assessment participants, the maturity levels of similar
business units and organizations can be compared" [18].

Develop efforts related to security metrics and measurements with a high level of abstraction and
formalism are often difficult to analyse and apply in organizations [17].

In order to improve the understanding and acceptance of all defined metrics, organizations should
fund them into process improvement frameworks that should take into account the objective of the
metrics application. They should also identify metrics as develop strategies to generate metrics and
define how these will be reported and ultimately create an action plan and establish a review cycle
[16].

Currently, information is one of the most valuable assets for companies so, its preservation has
become critical. For that purpose, it is important to use frameworks capable of guaranteeing the
security and privacy of data since this is obtained through processes and procedures created to
strengthen the objectives of organizations.

A couple of examples of these frameworks are NIST Special Publication 800-53 [19] and [20]. NIST
SP800-53 reports security and privacy controls to facilitate the system implementation and protect
organizational operations from a diverse set of threats, such as cyberattacks, structural failures, and
human error. Thus, security and privacy controls are positioned "to support the integration of
information security and privacy into organizational processes including enterprise architecture,
systems engineering, system development life cycle, and acquisition/procurement”. If this integration
is successful, "it will demonstrate greater maturity of security and privacy programs and provide tighter
coupling of security and privacy investments for core organizational missions and business functions".
The Center of Internet Security (CIS) is an entity that promotes Internet security. To help preventing

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 35 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

dangerous attacks and supporting the structures implemented, it proposes a set of cybersecurity
practices and defensive actions. CIS, for each measure, encourages that metrics are always defined. It
is important to be aware that many of the metrics defined require a high maturity level.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 36 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

4 Implementation

4.1 Security & Privacy Data Space Infrastructure

4.1.1 Identity Manager and Access Policy

As referred in section 3, the IdM and AC functions will be supported by a Keycloak server [21], an
implementation of the OpenID Connect standard. Nowadays, it is usual to deploy a Federated solution
to allow a more flexible architecture and a centralization strategy. Keycloak supports any type of
architecture. In the FISHY prototyping and development phases it may be better to deploy a separate
server in each domain (user case provider). They all should be configured in the same way, making it
easy to move to an alternative architecture organization (like high-availability cluster) at any time.

Keycloak demands for very low requirements:

• Runs on any operating executing Java.

• Java 8 JDK.

• zip or gzip and tar utilities.

• At least 512 MB of RAM.

• At least 1G of disk space.

• Shared external database, such as PostgreSQL, MySQL, Oracle, etc. To run in a cluster, a DB is
required.

Within FISHY, Keycloak will run in a Docker container. To proceed with the installation via Docker, the
following command is used:

$docker run -p 8080:8080 -e KEYCLOAK_USER=admin -e KEYCLOAK_PASSWORD=admin
quay.io/keycloak/keycloak:13.0.0

When Keycloak is started for the first time, Keycloak itself creates a predefined domain, called Master,
as it is the domain with full permissions on everything. Administrator accounts in this domain have
permissions to view and manage any other domains created on the server instance. When defining an
initial administrator account, it is created in the master domain. The initial login to the administration
console will also be through the master domain. Thinking of good identity management practices, it is
recommended not to use the master domain to manage users and applications. According to Keycloak,
there are two types of realms, as illustrated in Figure 21:

• Master realm - Created at the beginning of the Keycloak. It contains the administrator account
that was created at the first login. This realm should only be used to create other realms with
administrative permissions.

• Other realms Created by the administrator in the master realm. In these realms,
administrators create users and applications. Applications are owned by users.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 37 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

 Figure 21. Realm management architecture

Keycloak provides some pre-defined functions to facilitate the management, such as Admin, User,
Manager, and Employee. To manage these functions and accesses, Keycloak provides us with a series
of roles and the possibility of creating more granularly the rules for these functions, because managing
users individually is not a good practice. There is also the possibility to enable the SSL/HTTPS Mode for
the domains, thus defining that to interact with that region, the requirements established by the
SSL/HTTPS Mode must be met.

For user management, Keycloak offers several options that can be analysed according to the
requirements of each scenario covered. The creation of users can be carried out mainly through Realm
Admin, User Storage Federation, or by self-registration.

• Realm Admin: In this case, the domain administrator, will have to create each user through
the administrative console or code.

• User storage federation: Keycloak can federate databases of existing external users. You can
also use the protocols: LDAP and Active Directory. Keycloak also provides support for encoding
extensions in any database, using the SPI of Keycloak itself.

• Self-registration: This function, when activated, creates a link on the registration page so that
the user can make his registration. The fields that the user will see, can be changed by the
admin.

Keycloak also allows us to implement some security standards, such as the mode of actions required,
tasks that a user must complete before being allowed to log in. According to Keycloak, these are the
necessary actions:

• Update password: When defined, a user must change their password.

• Configure OTP: When defined, a user must set up a one-time password generator on their
mobile device using the free OTP application or Google Authenticator.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 38 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

• Check email: When defined, a user must verify that they have a valid email account. An email
will be sent to the user with a link that they must click on. Once this workflow is completed,
they will be allowed to log in.

• Update profile: This required action asks the user to update their profile information, that is,
their name, address, e-mail, and/or phone number.

For customer management, it is important to understand how the AS sees a customer. Clients are
entities that can request authentication from a user. The creation and configuration of clients are
carried out in advance through privileged access, an administrator account. Keycloak creates
customers in two ways:

• The first type of customer is an application that wants to participate in a single sign-on. These
customers just want Keycloak to provide security for them.

• The other type of client is requesting an access token to be able to call other services on behalf
of the authenticated user.

Keycloak provides two protocols to protect the applications, OpenID Connect and SAML [22]. In FiSHY,
the protocol that will be used at first will be OpenID Connect, however, if cases arise, it is possible to
create clients that use the SMAL protocol.

4.1.2 Data Infrastructure

The core component of the FISHY Data Infrastructure is the Fabric Node, and its implementation will
be based on the evolution of the Semantic Data Aggregator (SDA) being implemented to support the
processing of experimental telemetry data within the 5Growth project [23], augmented to support
access control and provenance metadata, and to incorporate specific privacy preservation
mechanisms. The architecture of this SDA is depicted in the following figure.

Figure 22. Initial Data Fabric Node architecture

Sources are Consumers are registered using their metadata, and these metadata are used to drive the
collection of data from Sources, their adaptation according to the required results, and the delivery to
the registered Consumers. The main elements in the current SDA architecture include:

• The Context Broker, in charge of receiving and processing the metadata descriptors for the
attached Sources and Consumers. Metadata are based on the ETSI NGSI-LD standard [24] and kept
in a Context Registry to be used by the other SDA components.

• The Weaver, in charge of orchestrating the data collection, adaptation and transformation
process. It uses the Context Registry to identify Sources and Consumers, instantiating and
configuring the required connectors and processing modules.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 39 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

• Source Connectors, in charge of retrieving data from Sources. Current connectors are based on
Apache NiFi [25] and implement different access methods and protocols, and support for
consuming a number of data modelling languages.

• Stream Processors, in charge of performing processing and adaptation tasks that can be derived
from the analysis of Source and Consumer metadata by the Weaver. Current processors are based
on Apache Flink [26], with a number of modules specific for generally required tasks, plus support
for the definition of specific ones.

• Dispatch Connectors, in charge of delivering data to Consumers. Current connectors are based on
Apache NiFi as well, implementing different delivery methods and protocols, and support for a
number of output data modelling languages.

• All these elements are supported by a Data Substrate based on Apache Kafka [27], conforming a
generalized data bus on which elements are plugged in. The use of Kafka allows as well for a direct
integration of those Sources and Consumers able to directly interface through a data bus of these
characteristics.

4.2 Trust & Incident Management

4.2.1 Vulnerability Assessment

Regarding vulnerability assessment, ATOS is providing the Risk Assessment Engine (RAE). The tool can
perform a vulnerability assessment of the target infrastructure by means of its own vulnerability
scanner. RAE’s Testing Module is responsible of running the scanner.

On a high level, RAE works in the following way:

Figure 23. Inputs and outputs of RAE

Firstly, the user is asked to complete a questionnaire. This is done with the purpose of gathering
infrastructure or company-related information which RAE needs to perform the assessment. Any
information gathered from the user is stored in the Datawarehouse of the tool and employed by RAE
to outline a profile. There are two algorithms in RAE:

• The first one (Algorithm 1) gathers the answers provided by the user and gives them a weight
and a score.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 40 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

• The second one (Algorithm 2) considers how the answers relate to the security environment,
that is, how relevant is the answer in terms of confidentiality, integrity, and availability of the
information.

Besides, data gathered from the user is combined with information related to vulnerabilities. RAE
contains a Testing Module. This component executes a vulnerability scanner that can detect
vulnerabilities in the target infrastructure. Once the scan is completed, the information is sent to
Algorithm 2.

Therefore, Algorithm 2 weighs and links the vulnerabilities found with the impact they may suppose
to the business with reference to the confidentiality, integrity, and availability of the information.
When the processing and computation is performed, the algorithm sends the results to the Report
production component or “Aggregator”, which is the one responsible for elaborating the report and
sending it to the Dashboard where it will be shown to the user.

In addition, RAE also contains:

• A modelling component: starting from the inputs described the modelling component defines
an instance of a model used to be used by the algorithm.

• A triggering detector, which detects if any input of the model has been modified.

RAE works in real time, but this does not mean that is constantly assessing the risk level. It is triggered
according to the following scenarios:

1. On-demand, that is, when asked by the user. This encompasses two possibilities:
a. The user completes a questionnaire about the company.
b. A new vulnerability scan is launched.

2. “Semi-automatic” way, which considers four scenarios:
a. The user changes any of the answers provided in the questionnaire: that would mean

that there is a modification in the business indicators.
b. The user chooses a different model to work with. This situation is detected by RAE and

then a new risk assessment is launched.
c. There is a modification of the vulnerability indicators, that is noticed when the

vulnerability scan is completed, and results are interpreted.
d. If there is a variation in events and alarms, which produce the algorithm to be launched

again.

As commented before, RAE needs two inputs to operate:

1. Information of vulnerabilities of the monitored platform.
2. The user provides data about the monitored infrastructure.

Then, all the data is combined and a RAE’s algorithm can weight and assess how vulnerabilities found
could influence the monitored platform, especially in terms of guaranteeing the confidentiality,
integrity, and availability of the information.

As a general-purpose cyber-risk assessment solution, RAE offers a pre-built framework which enables
the development and evaluation of specific use case models.

Regarding the FISHY project, the two main features to be considered are vulnerability- and impact
assessment, for which the following specific components of RAE may be adapted on demand to meet
the FISHY specifications:

• Company info: Both basic entity data (such as company description, industry, or managing
staff) and set of more specific questions about the company (expectedly related to the
assessment taking place) can be defined. Partners, external contractors, or any kind of third-
party companies may be covered as well.

• Company assets: Whether these be physical servers, equipment, software, or any other kind
of valuable company good involved in a risk scenario to be evaluated, the RAE covers a wide

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 41 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

range of variables describing the asset loss costs in case of a breach, and associated coefficients
for its availability, confidentiality and integrity to be modelled.

• Data processing activities (DPA): Any critical operation involving company assets (such as daily
supply chain facility processing) is conceived as a DPA, which defines specific processing
threats, risks, and counter measures as model selection assistance. As stated before, a DPA
may relate different companies incurring on a common processing or sharing situation.

• Risk models: This last element offers a set of 10 predefined well-known risk models to carry
out the main risk assessment. This set may be possibly extended with new models to fit the
specific supply chain end cases. More specifically, models evaluate risks within a predefined
data processing activity under the following considerations:

o Model methodology: Risk models may yield both qualitative and quantitative
(economic losses) estimations, being the former suitable for impact assessment
modelling as a partial goal of FISHY.

o Indicators: These are the internal system state variables which take the role of inputs
to the model assessment. Vulnerabilities scanned and detected by FISHY can in turn
trigger specific indicators of the models defined, launching a re-evaluation or update
of the previously computed risk models.

o Mitigations: The report generated after the assessment if performed also features a
list of suggested mitigations to secure or further reduce the risk of the target entity
system. These, together with the previous methodological estimations, constitute an
enriched source of maintenance data for system administrators or technical
operators.

The current design of RAE allows not just for custom risk model implementation, but also for
vulnerability alerting via the built-in message broker. Support for report re-evaluation is provided out
of the box, while a whole model needs to be defined first.

Furthermore, as part of the RAE end-user interface, REST endpoint or integration APIs may be served
by the web application, so as any kind of read or write access to the internal data model.

4.2.2 Incident Detection

Monitoring capabilities of XL-SIEM require of agents to be deployed on the target infrastructure. These
agents gather all sort of data related to security incidents and send it to the SIEM. Later, this
information will be correlated and processed by the XL-SIEM engine resulting in refined data, more
suitable to be harnessed by FISHY. Incident detection is an essential process as part of the FISHY Trust
Manager and, more specifically, of the Trust & Incident Manager.

XL-SIEM is made up of three components:

1. XL-SIEM agent(s) gather and normalize events. The agent is designed to send information of
events to the engine where they are processed. Agents need to be deployed on the target
infrastructure. Apart from gathering information, the agents deal with the translation of data
to security events. According to the context, some events could possibly be processed by
agents prior to their shipping to the engine. One example of this behaviour would be the
anonymization of data.
Agents can be customized to gather data from different explicit sources, always depending on
the use case.

2. XL-SIEM engine is aimed at analysing and processing events collected by the agents. The
engine raises alarms according to the correlation rules and security directives. Event
Processing Language (EPL) is the way security rules are expressed in XL-SIEM. EPL allows for
declaring security directives, which may have complicated patterns, in a simple and
straightforward way. When defining security directives, XL-SIEM can work in two ways:

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 42 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

a. Rules customized by the user, who has the possibility to determine and select his own
rules.

b. Several pre-established categories of rules: in this scenario, the user should choose
amongst categories such as malware detection, brute-force attacks, network attacks…
which are different categories for which security directives have already been defined.

The engine runs on an Apache Storm framework [28] and produces alarms expressed in a
standard format such as JSON. This allows for an easy sharing of the information.

3. XL-SIEM dashboard provides data in a friendly way by means of a graphical UI. It displays
different kind information such as events, charts, graphics, etc and helps users defining the
setup of the tool in a friendly way. In addition, the dashboard is a fully configurable view where
various widgets provide information on KPIs, security trends and more. One example of the
KPIs displayed by the dashboard includes the events and alarms by hour managed by the XL-
SIEM.

Figure 24. Architecture of the XL-SIEM

In addition, XL-SIEM integrates quite efficiently with different sensors, including DNS traffic sensors
(for DoS detection), IDS (both NIDS and HIDS), firewalls or even honeypots and honeynets. This non-
intrusive interaction makes possible that XL-SIEM can help with incident detection without requiring
neither a great amount of time nor expertise.

Besides, some fine tuning can be performed on XL-SIEM based on FISHY’s requirements:

• Develop new ad-hoc sensors to gather data and ease detection events according to specific
features of the monitored infrastructure. This could be complemented with the refinement of
event parsing rules, as needed.

• Improvement of the internal logic of the correlation engine. This means providing new
correlation rules for creating event alarms. These could even potentially feed other tools such
as the RAE.

• Tailor alarms to the specific features of the monitored infrastructure.

• Integration of the dashboard with normalization software, depending whether data is required
to be manipulated before being displayed.

A new functionality for filtering and separating the relevant information for different endpoints will be
implemented.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 43 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

4.2.2.1 Trust Monitor

A preliminary implementation of the Trust Monitor is available at https://github.com/shield-
h2020/trust-monitor. In particular, it is a cloud-native application that could be deployed using Docker
technology. A mechanism for the automation of such a deployment is provided within the same
repository and leverages Docker Compose.

The current version of the TM supports several attestation drivers, including one for interacting with
the Open Attestation Framework (OAT). This framework has been customised to support Docker
container attestation and leverages TPM 1.2. We foresee an improvement of the aforementioned
solution towards the development of a new attestation driver for a more recent attestation
framework, Keylime1. This is a CNCF-backed project which allows performing remote attestation
leveraging TPM 2.0. Setting aside the development of the attestation driver, several changes to
Keylime are required in order to verify the integrity of the software running within Docker containers.

4.2.3 Impact Assessment

The purpose of the Risk Assessment Engine (RAE) is to assess cyber risk. As it has been described for
the vulnerability assessment, RAE works in real time and executes a risk-model based algorithm.
According to the results obtained in the assessment, RAE suggests some mitigation measures, which
are represented to the user by the Dashboard or, to be more precise, by the Decision Support System,
in a friendly way.

Although RAE was mainly developed to assess the risk level, it can perform other functions as well,
including the estimation how serious can be any incident for the infrastructure or providing valuable
insight about the impact on the business processes. It is vital not only to know that information but
also what measures can be adopted to mitigate or, at least, reduce the risk level as much as possible.
As an added value of the RAE tool, it can suggest mitigation measures that help to reduce the impact
of risks on the monitored infrastructure.

4.2.4 Mitigation

4.2.4.1 PMEM

PMEM is an R-based application usable as an ML-base mitigation tool.

PMEM incorporates a threat/attack detection model generated with supervised machine learning. The
model detects different types of attacks that can affect the system. When an attack is detected, the
program triggers an alarm and suggests an action to take.

Attacks detected by PMEM will be stored in the threat/attack repository and used to train future
models that eventually will replace the current model that contains the application.

The online mode is under development currently, and it will be completely functional for IT-2 of the
FISHY project.

4.2.5 Threat/Attack Repository

The Threat/Attack Repository will handle multiple types of data, necessitating a careful consideration
of the selection of storage technology. Relational databases, such as MySQL [29] or Postgres [30],
should be well suited to definitions of supply chains, as nodes that comprise the supply chains and the
organizations that are owners or otherwise involved form traditional relations that can be mapped

1 https://keylime.dev/

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 44 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

efficiently. The metrics gathered from the monitored infrastructure on the other hand would be better
served by a time-series database, such as InfluxDB [31], allowing easier identification of trends in the
data. The volume of results of continuous metrics analysis would again be more suited to a different
storage technology, namely document stores like Cassandra [32] or MongoDB [33]. As the
Threat/Attack Repository component will expose a REST API, if the requirements and specifics of the
different types of data strongly diverge, multiple storage technologies could be supported in a way
that would remain transparent to other actors in the FISHY Platform. The vision for the Threat/Attack
Repository for IT-1 is the use of a relational database, the performance when handling data from use
case partners can then be measured and indicate the necessity for supporting multiple storage
technologies.

The other important aspect of the Threat/Attack Repository is the inclusion of a pub/sub (publish,
subscribe) layer, that will allow components that expect certain data as their input to be notified
immediately when new data is available. This system can facilitate the immediate deployment of
cybersecurity tools to the nodes of a newly registered supply chain, analysis of infrastructure metrics
as soon as they are available, and the generation of new intents and policies based on analysis results
of the TIM components. The most likely candidate for the implementation of the pub/sub layer of the
Threat/Attack Repository is RabbitMQ [14], an AMQP [34] based message broker. It has a system of
different types of exchanges that allow easy and fine-grained subscriptions to topics of interest, such
as fan-out exchanges where all messages are delivered to all subscribers, or topic exchanges, where
each message has a routing key, enabling subscribers to only receive a subset of all the messages
published to the exchange. Subscribers can consume messages by defining queues that bind to
combinations of exchanges and routing keys, thus defining the data sources the subscribers are
interested in. Queues also enable the scalability of subscribers, with support for round-robin delivery
of messages in case of multiple consumers.

4.2.6 Smart Contracts

The SC component includes three main (groups of) components namely the Relay Server, the Event
Server and a collection of generic and FISHY specific smart contracts acting like DAPPs on top of the
Ethereum Blockchain (ETH BC).

For a complete list of possible information that could be eventually included in the specification of the
FISHY SC, the interested reader is requested to have a look at [35]. Note, however, that for the present
prototype, a subset of all these capabilities will be implemented, based on the project needs, as will
be described in the relevant part of section 4 of this document.

The next table provides a tabulated overview of the DAPPs that are foreseen to be provided by the SC
context.

Table 2: List of DAPPs provided by the SC module

DAPP name Description

EntityManager Handles the UE and IoT entity types, such that their identities are categorised

EntityDataManager Handles data logging operations of the registered identities (UE and IoT).

Indeed, as an extended measure of security, whenever a FISHY compliant device first enters the
blockchain, it needs to also register its entity type, as well as the set of devices and platforms supported
by the FISHY supply chain entities. Based on its type, every entity (UE or IoT) can interact with the
blockchain by invoking a set of smart contracts.

Notably, all the DAPPs above are protected by the Identity Manager of FISHY (see above for a detailed
description). In this sense, it is not possible to invoke them directly but, rather, only through the IdM
(connected to Relay Server, through the relevant RESTful API). It is worth highlighting that the FISHY

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 45 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

consortium will provide a pre-compiled and ready to use python client so that the UE can interact with
the blockchain without knowing anything related to the blockchain per se.

Every time a DAPP completes a designated and well-defined set of steps, an ETH event [36] will be
emitted, getting handled by the Event Server. The Event Server will feature a mechanism allowing third
party applications and contexts to connect to it and get information in a real-time or online manner.
This functionality will be backed up at least either by a publish-subscribe mechanism (e.g. based on the
well-known AMQP protocol [34] or via a web-socket-based toolkit, facilitating real-time web-
applications integration. Alternatively, any third party will be able to get this information posted to a
pre-defined service API endpoint so that it may be further processed.

As regards the interaction of SC with the rest of the core components of FISHY, these are mostly
because the SC is a gateway to the ETH BC infrastructure, whose security part severely lies on IdM
functionality and the relevant smart contracts.

Since IdM and SC are very tightly connected, being utterly intertwined, the core architecture of SC has
been already described in the IdM section. The SC core architecture is composed of two components
(Relay Server and Event Server) together with the DAPPs.

The SC Relay Server acts as a proxy between the UE (or other modules integrating with the blockchain
e.g. to store data) and the blockchain, particularly the Relay SC. Essentially, it exposes part of the Relay
SC in the form of a RESTful interface so that it might be exploited without necessitating mining or
operation of exotic blockchain technologies at the UE or IoT side. When the request is not related to
storing information or identities in the blockchain but, rather, to retrieving data from the blockchain,
the Relay Server seeks the data from the SC Event Server.

The SC Event Server is a component that integrates with the SC DAPPs acting in the form of a cache,
speeding up the data retrieval from the blockchain; whenever a transaction against one of the SC
DAPPs gets accepted by the blockchain and enters a valid block, an Ethereum event gets emitted and
written in the transaction log of the blockchain. The SC Event Server handles such events and stores
them locally, always holding a local copy of the transaction logs of the blockchain. Periodically, the
event server performs a self-assessment, refreshing the database to ensure integrity with the
blockchain data. Similarly, the SC Event Server has the capability to re-build its internal database once
this has been destroyed or upon initialization.

4.3 Metrics Gathering Tools

To facilitate the identification and monitoring of metrics, we have developed a list of possible tools
capable of meeting these requirements.

4.3.1 Nagios

Nagios is a monitoring system that allows supervising and controlling the entire IT infrastructure
ensuring that systems, applications, services, and business processes work properly. If any process
fails, the technical team intervenes almost immediately to bridge the failure before it affects business
processes, end-users, or customers [37].

Nagios provides agentless and agent-based solutions to monitor Windows, Linux, and Unix systems, as
well as network equipment (include operating system metrics). Furthermore, agentless technologies
are used to monitor solutions without the need to install agent software on each monitored system.

Nagios incorporates a set of plugins for monitoring different types of system metrics, such as:

• Number of available cores of a CPU

• Maximum time to a file being inside a folder

• Percentage available physical memory on a Linux system

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 46 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

• Delays and inconsistencies in connection

• Average time between request and response (“Black box”)

• Number of sensors alive (“Black box”)

• Number of UDP packet loss (“Black box”)

• Check if specified process name can be found listening on a specified TCP port (“Black box”)

4.3.2 OSSEC

Open Source HIDS SECurity (OSSEC) is a robust open-source intrusion detection system that performs
log analysis, integration of logs, file integrity monitoring, Windows registry monitoring, centralized
policy enforcement, rootkit detection, real-time alerting, and active response from multiple devices
and formats running on most operating systems. This tool has a centralized, cross-platform
architecture, allowing multiple systems to be monitored, managed, as well as analyzing firewalls, IDSs,
web servers, and authentication logs [38]. In OSSEC we define metrics based on features such as the
following:

• Number of applications installed on your client box

• Checking if exist some changes in a rule in a firewall

• Number of non-public rootkits

• Number of hidden ports

• Number of TCP and UDP ports on the system

• Minimum time to block an IP

• Number of service unavailable

4.3.3 XL-SIEM

As it has been described, XL-SIEM (Cross-Layer SIEM) is a tool developed by ATOS with the purpose of
dealing with huge volumes of security information. After analysing and correlating the data, and
depending on the context, the XL-SIEM could raise security alerts. Besides, being able to process and
provide security and event information to FISHY could make the different when dealing with security
incidents on the ICT supply chain of the monitored infrastructure. When answering to incidents, the
feature of active reconfiguration of the monitored platform proposed by FISHY, can be easily
performed if tools such as XL-SIEM feed with appropriate, reliable, and refined security information.
Faster response times will be achieved in case data is available at the very moment of need.

Components such as incident detection can greatly benefit from relying on XL-SIEM as a source of
information while mitigation of threats and security incidents will be more effective as long as the
platform relies on updated security information.

Scalability is other of the various advantages of XL-SIEM, since the tool can distribute the information
of security events to be processed by several nodes. Besides, XL-SIEM can obtain information from
diverse kind of sensors including:

• DNS traffic sensor of ATOS, which aims at detecting botnets, DoS attacks or even brute force
attacks.

• Network Intrusion Detection Systems or NIDS such as Suricata.

• Hosted IDS such as OSSEC.

• Information provided by firewalls.

• Tools that collect log data from the OS. One example is Snare (in a Windows environment).

• Tools that detect and prevent attacks on MAC / IP address such as Arpwatch.

• Information provided by Honeypots.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 47 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

Finally, XL-SIEM can provide reports on PDF format which sum up all the activity performed by the tool
in a specific timeline. Alarms, assets, information of events as well as several metrics can also be
included in the report generated by XL-SIEM.

Figure 25. Example of security events graphic provided by XL-SIEM

To sum up, FISHY response against an incident cannot but improve when it is provided with reliable
security and event information.

4.3.4 Wazuh

Wazuh helps organizations to detect intrusions, threats, and behavioral anomalies by collecting,
aggregating, indexing, and analyzing security data. Fast threat detection and remediation is possible
because the lightweight agent provides the necessary monitoring and response capabilities, and the
server component supplies the security intelligence and performs data analysis. It can be deployed on-
premises or in hybrid and cloud environments [13]. The Wazuh agents can run on many different
platforms, such as Windows, Linux, Mac OS X, AIX, Solaris, and HP-UX.

Wazuh has two methods for infrastructure monitoring: agent and agentless monitoring. “Agent
monitoring can also be vendor-agnostic and uses a small client installed on servers to collect data and
metrics. This typically allows for richer data and more flexibility. Agentless monitoring is relying on
SNMP, WMI, SSH, NetFlow, and other protocols to retrieve metrics back to monitoring software,
agentless monitoring is lightweight and is often enabled by default on your servers or devices. For
specialized hardware (like routers, switches, and load balancers), this is usually your only option”1.

This platform could protect monitor systems because providing capabilities like security analytics,
intrusion detection, log data analysis, file integrity monitoring, vulnerability detection, configuration
assessment, incident response, regulatory compliance, cloud security, and container security that are
used for threat prevention, detection, and response. For each capability, Wazuh has some process
where it is possible to define metrics, for example:

• Number of files that end with .log

• Maximum recursion level allowed

• Percent of hidden processes

• Maximum time to localhost response

• Checks that the output of the command contains a line starting by enabled, check if a registry
exists

• Average time to resolve system vulnerabilities

• Number of cryptographic keys, number of publicly accessible buckets

• Number of applications installed in a container

1 https://www.panopta.com/resources/agent-vs-agentless-monitoring/

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 48 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

4.3.5 VAT (XLAB)

Figure 26. Example of a VAT report

The VAT is composed of several components, a scheduler tasked with performing vulnerability
assessments at predefined intervals, a REST API that allows communication and integration with other
components (HTTP and AMQP), a docker interface that is able to start the VAT containers on-demand,
a webUI frontend that gives users an overview of running scans and the VAT docker image that includes
W3AF, OWASP and NMAP assessment tools

The VAT performs web server and infrastructure vulnerability scans and assessments according to an
execution schedule and produces reports of its findings. The reports are in JSON format and can be
viewed through the webUI (depicted in Figure 26) or passed on to other components for further
analysis.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 49 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

5 Conclusions

The blocks constituting the Trust Manager (TM) have been identified and described, putting them in
the context of the whole FISHY framework. A modular description of these blocks has been provided,
discussing the functional characteristics, and required interfaces of the individual modules, and
considering the relevant workflows in which they participate. Finally, the applicable tools identified by
the project team to implement the discussed functionality are described, including the related
features, and the necessary adaptations to interface them within the TM environment and with the
rest of the FISHY framework.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 50 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

References

[1] OpenID, Welcome to OpenID Connect. https://openid.net/connect/. Retrieved 2021-06-27.

[2] M. Jones, J. Bradley, N. Sakimura, JSON Web Token (JWT).
https://datatracker.ietf.org/doc/html/rfc7519. Retrieved 2021-06-27.

[3] Yuan Cao and Lin Yang, A survey of Identity Management technology. 2010 IEEE International
Conference on Information Theory and Information Security, 2010, pp. 287-293, DOI:
10.1109/ICITIS.2010.5689468.

[4] Talamo, M., Ramachandran, S., Barchiesi, M.-L., Merella, D. & Schunck, C., Towards a seamless
digital Europe: the SSEDIC recommendations on digital identity management. Open Identity
Summit 2014, Bonn.

[5] Rountree, D., Federated identity primer. Syngress, 2013.

[6] P. Samarati and S. Capitani de Vimercati, Access control: Policies, models, and mechanisms.
Foundations of Security Analysis and Design, LNCS 2171. Springer, 2000.

[7] OASIS, eXtensible Access Control Markup Language (XACML) Version 3.0. http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf. Retrieved 2021-06-27.

[8] Ravidas, S., Lekidis, A., Paci, F., & Zannone, N., Access control in Internet-of-Things: A survey.
Journal of Network and Computer Applications 144, 79–101. 2019. DOI:
10.1016/j.jnca.2019.06.017.

[9] D. Hardt, Ed., The OAuth 2.0 Authorization Framework.
https://datatracker.ietf.org/doc/html/rfc6749. Retrieved 2021-06-24.

[10] Ansible, Ansible is Simple IT Automation, https://www.ansible.com/. Retrieved 2021-06-14.

[11] W3AF, Open source web application security scanner, https://w3af.org/. Retrieved 2021-04-07.

[12] OWASP, Zed Attack Proxy, https://owasp.org/www-project-zap/. Retrieved 2021-04-07.

[13] Wazuh, The open source security platform, https://wazuh.com/. Retrieved 2021-04-07.

[14] RabbitMQ, Messaging that just works, https://www.rabbitmq.com/. Retrieved 2021-04-07.

[15] Redis, Redis, https://redis.io/. Retrieved 2021-04-07.

[16] Payne, S. C., A guide to security metrics. SANS Institute Information Security Reading Room,
2006.

[17] Jansen, W. A., Directions in security metrics research. Diane Publishing, 2009.

[18] J. Poppelbuss, M. Roglinger, What makes a useful maturity model? a framework of general
design principles for maturity models and its demonstration in business process management.
ECIS 2011.

[19] NIST SPSP 800-53 Rev. 5, Security and Privacy Controls for Information Systems and
Organizations. 2021.

[20] CIS, Center for Internet Security. https://www.cisecurity.org. Retrieved 2021-04-12.

[21] Keycloak, Open Source Identity and Access Management. https://www.keycloak.org. Retrieved
2021-06-27.

Document name: D3.1 Trust Manager components design and implementation (IT-1) Page: 51 of 51

Reference: D3.1 Dissemination: CO Version: 1.0 Status: Final

[22] OASIS, Security Assertion Markup Language (SAML) V2.0 Technical Overview.
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-
cd-02.pdf. Retrieved 2021-06-27.

[23] 5GROWTH Project, 5G-enabled Growth in Vertical Industries. https://5growth.eu. Retrieved
2021-06-27.

[24] ETSI White Paper No.31, NGSI-LD API: for Context Information Management, January 2019.

[25] Apache Foundation, Apache NiFi: An easy to use, powerful, and reliable system to process and
distribute data. https://nifi.apache.org. Retrieved 2021-06-27.

[26] Apache Foundation, Apache Flink - Stateful Computations over Data Streams.
https://flink.apache.org. Retrieved 2021-06-27.

[27] Apache Foundation, Apache Kafka. https://kafka.apache.org. Retrieved 2021-06-27.

[28] Apache Foundation, Apache Storm. https://storm.apache.org. Retrieved 2021-06-27.

[29] MySQL. https://www.mysql.com/. Retrieved 2021-06-14.

[30] PostgreSQL: The world's most advanced open-source database. https:/www.postgresql.org/.
Retrieved 2021-06-14.

[31] InfluxData, InfluxDB: Purpose-Built Open-Source Time Series Database.
https://www.influxdata.com/. Retrieved 2021-06-14.

[32] Apache Foundation, Apache Cassandra. https://cassandra.apache.org/. Retrieved 2021-06-14.

[33] MongoDB, The database for modern applications. https://www.mongodb.com/. Retrieved
2021-06-14.

[34] Advanced Message Queuing Protocol. https://www.amqp.org/. Retrieved 2021-06-14.

[35] Web3 ETH API. http://web3py.readthedocs.io/en/stable/web3.eth.html. Retrieved 2021-06-01.

[36] Solidity - Events. http://solidity.readthedocs.io/en/v0.4.21/contracts.html#events. Retrieved
2021-06-01.

[37] Nagios - The Industry Standard In IT Infrastructure Monitoring. https://www.nagios.org.
Retrieved 2021-04-12.

[38] OSSEC - World's Most Widely Used Host Intrusion Detection System – HIDS.
https://www.ossec.net/. Retrieved 2021-04-13.

