
This document is issued within the frame and for the purpose of the FHISY project. This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under Grant Agreement No. 952644. The opinions expressed and arguments employed herein do not necessarily reflect the 

official views of the European Commission. 

This document and its content are the property of the FISHY Consortium. All rights relevant to this document are determined by the applicable laws. Access to 

this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or treated in any manner 

inconsistent with the rights or interests of the FISHY Consortium or the Partners detriment and are not to be disclosed externally without prior written consent 

from the FISHY Partners.  

Each FISHY Partner may use this document in conformity with the FISHY Consortium Grant Agreement provisions.  

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI: Classified, Int = 

Internal Working Document, information as referred to in Commission Decision 2001/844/EC. 

 

 

 

 

A coordinated framework for cyber resilient supply chain systems over complex ICT 

infrastructures 

D3.3 Trust Manager components design and 

implementation (IT-2) 
 

 

 

Keywords: 

Integration, SPI workflow, TM workflow, validation strategy 

Document Identification 

Status Final Due Date 31/10/2022 

Version 1.0 Submission Date 07/11/2022 

Related WP WP3 Document Reference D3.3 

Related 

Deliverable(s) 

D3.1, D3.2, D4.1, D4.2 Dissemination Level 

(*) 

PU 

Lead Participant UMinho Lead Author Henrique Santos (UMinho) 

André Oliveira (UMinho) 

Contributors UPC, UPC, TID, SYN, 

POLITO, UC3M, XLAB 

Reviewers Eva Marin-Tordera (UPC) 

Jose M. Manjón (TID) 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 2 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

Document Information 

List of Contributors 

Name Partner 

Henrique Santos UMinho 

André Oliveira UMinho 

Pedro Magalhães UMinho 

Diego R. López TID 

Jose M. Manjón TID 

Xavi Masip-Bruin UPC 

Eva Marín-Tordera UPC 

Nelly Leligou SYN 

Cataldo Basili POLITO 

Daniele Canavese POLITO 

Silvia Sisinni POLITO 

Luis González UC3M 

Guillermo Yuste ATOS 

Antonio Álvarez ATOS 

Jan Antic XLAB 

 

Document History 

Version Date Change editors  Changes 

0.01 01/08/2022 André Oliveira (UMinho) ToC and Initial Structure of the Document 

0.02 15/09/2022 Eva Marín (UPC) First version of Section2 

0.03 26/09/2022 André Oliveira (UMinho) UMinho Contribution 

0.03 28/09/2022 

 

Pedro Magalhães 
(UMinho) 

 

Add 4.6 and 5.3 contribution 

 

0.04 03/09/2022 Nelly Leligou (SYN) Added the First version of Section 4.7  

0.05 04/09/2022 Ayaz (UPC) Added the First version of Section 4.4  

0.06 09/10/2022 Daniele Canavese, Silvia 
Sisinni (POLITO) 

POLITO contribution 

0.07 10/10/2022 André Oliveira (UMinho) Adjusting sections and contributions to the 
document 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 3 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

0.08 14/10/2022 Luis Gonzalez (U3CM) Added the First version of Section 5.1 

0.09 14/10/2022 Guillermo Yuste (ATOS) Added the First version of Section 4.1 and 4.3 

0.091 17/10/2022 André Oliveira (UMinho) Review of the Document 

 24/10/2022 Antonio Álvarez (ATOS) Refinement of the Document 

0.095 24/10/2022 Jan Antic (XLAB) Added the First version of Section 4; 4.2; 4.8; 
4.9; 4.10 and 5.3 

0.1 24/10/2022 André Oliveira (UMinho) D3.3 First Version Completed and sent for 
review 

0.11 26/10/2022 Eva Marín (UPC) Review of D3.3 

0.12 31/10/2022 André Oliveira (UMinho) D3.3 Content and Style Review comments 
addressed 

0.20 03/11/2022 André Oliveira (UMinho) D3.3 Second Version Completed and sent for 
review 

0.21 04/11/2022 Eva Marín (UPC) Review of D3.3 

0.22 04/11/2022 Jose M. Manjón (TID) Review of D3.3 

0.23 04/11/2022 André Oliveira (UMinho) D3.3 Content and Style Review comments 
addressed 

0.3 04/11/2022 André Oliveira (UMinho) D3.3 Third Version Completed  

1.0 07/11/2022 Antonio Álvarez, Juan 

Alonso (ATOS) 

Quality assessment and final version to 

be submitted. 

  



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 4 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Quality Control 

Role Who (Partner short name) Approval Date 

Deliverable leader Henrique Santos (UMinho) 04/11/2022 

Quality manager Juan Alonso (ATOS) 07/11/2022 

Project Coordinator Antonio Álvarez (ATOS) 07/11/2022 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 5 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

Table of Contents 

Document Information ........................................................................................................................... 2 

Table of Contents ................................................................................................................................... 5 

List of Tables........................................................................................................................................... 6 

List of Figures ......................................................................................................................................... 7 

List of Acronyms ..................................................................................................................................... 8 

Executive Summary .............................................................................................................................. 10 

1 Introduction .................................................................................................................................. 11 

1.1 Purpose of the document ..................................................................................................... 11 

1.2 Relation to other project work ............................................................................................. 11 

1.3 Structure of the document ................................................................................................... 11 

1.4 Glossary adopted in this document ...................................................................................... 12 

2 FISHY platform architecture .......................................................................................................... 13 

3 Security & Privacy Infrastructure Design ....................................................................................... 16 

3.1 Identity Management and Access Policy .............................................................................. 16 

3.2 Data Management ................................................................................................................ 17 

3.2.1 Privacy enforcement ........................................................................................................ 17 

4 Trust & Incident Manager Design .................................................................................................. 18 

4.1 XL-SIEM................................................................................................................................. 18 

4.2 Wazuh .................................................................................................................................. 19 

4.3 RAE ....................................................................................................................................... 20 

4.4 PMEM ................................................................................................................................... 21 

4.5 Trust Monitor ....................................................................................................................... 22 

4.6 Zeek ...................................................................................................................................... 26 

4.7 Smart Contracts .................................................................................................................... 26 

4.8 Central Repository ................................................................................................................ 29 

4.9 VAT ....................................................................................................................................... 30 

4.10 LOMOS.................................................................................................................................. 30 

5 Implementation in the Reference Framework .............................................................................. 31 

5.1 Introduction to FISHY Reference Framework ....................................................................... 31 

5.2 SPI Integration ...................................................................................................................... 31 

5.3 TIM Integration ..................................................................................................................... 32 

6 Conclusions ................................................................................................................................... 33 

References ........................................................................................................................................... 34 

 

 

 

  



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 6 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Tables 

Table 1. TM functionalities ....................................................................................................... 14 

 

 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 7 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Figures 

Figure 1. Update of the FISHY architecture for IT-2 ................................................................. 13 

Figure 2. Architecture in IT-2 related to WP3 ........................................................................... 15 

Figure 3. SPI Workflow ............................................................................................................. 16 

Figure 4. TIM tools workflow .................................................................................................... 18 

Figure 5. Wood-based Panels Trusted Value-Chain XL-SIEM deployment ............................... 19 

Figure 6. Securing Autonomous Driving Function XL-SIEM deployment .................................. 19 

Figure 7. RAE workflow ............................................................................................................ 21 

Figure 8. ML Based Detection Module Overall Internal working ............................................. 22 

Figure 9. FISHY high-level architecture ..................................................................................... 23 

Figure 10. Trust Monitor subcomponents ................................................................................ 24 

Figure 11. TM interaction workflow with the other components of the FISHY architecture ... 25 

Figure 12. Smart contracts internal organisation and relation to the high-level architecture 26 

Figure 13. Sequence Diagram for smart contracts component storing a detected security 

event in the F2F use case .......................................................................................................... 28 

Figure 14. Sequence Diagram for smart contracts component storing a policy to the 

blockchain in the F2F use case ................................................................................................. 29 

Figure 15 - LOMOS internal log processing .............................................................................. 30 

 

 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 8 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Acronyms 

 

Abbreviation / 
acronym  

Description 

AA Attestation Agent 

ABAC Attribute-based access control 

AC Access control 

API Application Programming Interface 

AS Authorisation Server 

AT Access token 

CA Cyber Agent 

CEF Common Event Format 

CVEs Common Vulnerabilities and Exposures 

D3.1 Deliverable number 1 belonging to WP3 

D3.2 Deliverable number 2 belonging to WP3 

D3.3 Deliverable number 3 belonging to WP3 

DAPP Distributed application 

DI Digital identity 

DID Distributed ID 

EC European Commission 

EDC Enforcement & Dynamic Configuration 

F2F Farm-to-Fork 

FRF FISHY Reference Framework 

IBFT Istanbul Byzantine Fault Tolerance 

IDS Intrusion Detection System 

IdM Identity management 

IdAM Identity and Access Management 

IRO Intent-based Resilience Orchestrator & Dashboard 

JSON JavaScript Object Notation 

JWT JSON Web Token 

K8s Kubernetes 

LOMOS Log Monitoring System 

MAC Mandatory access control 

ML Machine Learning 

NED Network Edge Device 

OIDC OpenID Connect 

OCSVM One Class Support Vector Machine 

P2P Peer-to-Peer 

RA Remote Attestation 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 9 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

Abbreviation / 
acronym  

Description 

RAE Risk Assessment Engine 

RBAC Role-based access control 

REST Representational State Transfer 

SADE Securing Autonomous Driving Function at the Edge 

SC Smart contract 

SCM Security Assurance & Certification Manager 

SIA Secure Infrastructure Abstraction 

SIEM Security and Information Event Management 

SPI Security & Privacy Data Space Infrastructure 

TIM Trust & Incident Manager 

TM Trust Manager 

VAT Vulnerability Assessment Tool 

VM Virtual Machine 

WP Work Package 

WBP Wood-Based Panels 

XACML eXtensible Access Control Markup Language 

XL-SIEM Cross-Layer Security Information and Event Management 

XML eXtensible Markup Language 

 

 

  



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 10 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

Executive Summary 

This deliverable focuses on the update of the deliverable D3.1[1], that belongs to third work package 
of the FISHY Project. It describes the design and implementation tasks of the Trust Manager (TM) 
module envisioned for the second iteration (IT-2) of the FISHY Project. In previous deliverables D3.1[1] 
and D3.2[2] the blocks in TM (Trust Manager) have already been designed and described, namely TIM 
and SPI, and details about the integration of these components were given. 

Deliverable D3.3 presents details about the component design and implementation for second 
iteration (IT-2).  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 11 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

1 Introduction   

1.1 Purpose of the document 

This deliverable describes the design and implementation of the Trust Manager (TM) module for the 
second iteration of the FISHY Project. It addresses the characteristics of the two blocks identified within 
the TM, namely the Trust & Incident Manager (TIM) and the Security & Privacy Data Space 
Infrastructure (SPI), at the second stage of the Project development iteration.  

After the description of the design and implementation of each one of the blocks in TM realized in D3.1 
[1], and the characterization of all aspects related to the integration of the TM component alongside 
the other components of the FISHY architecture described in D3.2[2], it is essential to review the work 
performed and do some improvements for the second iteration. In this deliverable, we present and 
describe the characteristics of the SPI and TIM outcomes to be integrated, as well as the design choices 
adopted for the second iteration of the Project. It also outlined/drafted the validation strategy and test 
to be realized. 

1.2 Relation to other project work  

The design and architecture of the Trust Manager (TM) module had already started on the first 
iteration of the FISHY Project and is extensively described in Deliverable 3.1 [1]. Also, the integration 
aspects of the modules SPI and TIM are studied and presented in Deliverable 3.2[2]. All three tasks 
referent to this module, namely T3.1, T3.2, and T3.3, were addressed indifferently in this Deliverable, 
and therefore D3.3 is the first output in terms of reporting, of the Trust Manager module for the second 
iteration of the project, creating a path for the module final integration in the FISHY Platform. D3.3 
marks the conclusion of T3.1 and T3.2, while T3.3 will run until the conclusion of WP3 in M30 (February 
2023). T3.3 takes care of the local integration within the Trust Manager module. This task works in 
parallel with its counterpart task, task T4.3, which integrates all the blocks within the Security and 
Certification Manager in WP4. Actually, in terms of timing WP3 and WP4 are totally symmetric and run 
fully in parallel. The output of both tasks/WPs will jointly feed the whole FISHY integration to be done 
in WP5 towards delivering the IT-2 version of the FISHY platform, to be documented in deliverable 
D5.2, due M32 (April 2023); as well as the whole proof-of-concept to be deployed in the three use 
cases. 

1.3 Structure of the document 

This document is structured into 6 major chapters, being this one an initial introduction to the 
document and the remaining described as follows: 

• Chapter 2 presents the FISHY Platform Architecture for the IT-2 of the Project. 

• Chapter 3 presents the SPI design and architecture structure for the IT-2. 

• Chapter 4 presents the TIM design and architecture structure for the IT-2. 

• Chapter 5 presents integration into the Reference Framework of the Trust Manager Module, 
concerning IT-2 details. 

• Chapter 6 presents the conclusion thoughts of the Deliverable. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 12 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

1.4 Glossary adopted in this document  

• Bbox: Black Box approach to system development, when dealing with modules 
provided by third-party without any implementation details besides the input/output 
function (opposite to Wbox). 

• Wbox: White Box approach to system development, when dealing with modules for 
which there is a full detailed implementation document along with source-code 
(opposite to Bbox). 

• Gbox: Gray box approach to system development, when dealing with modules for 
which we have the output/input function and some information about internal details 
(a middle stage between Bbox and Wbox). 

• Pub/Sub: Publication Subscription solution for data transaction systems providing 
some sort of middle storage and data organization mechanism. 

• OpenId Connect: open specification of a simple identity management layer on top of 
the OAuth2 authorization protocol. 

• OAuth2: OAuth 2.0 is an industry-standard protocol for authorization; it defines 
several flows to accommodate different Access Control requirements and 
implementations. 

• RabbitMQ: a highly flexible open-source message-broker software that supports 
several well-known queuing and data streaming protocols. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 13 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

2 FISHY platform architecture  

According to the DoA and the deliverables D3.1[1] and D3.2[2], the TM (Trust Manager) component is 
divided into two blocks: TIM (Trust and Incident Manager) and SPI (Security and Privacy Data Space 
Infrastructure) [1,2]. In this deliverable, D3.3, the design and implementation of both blocks will be 
described in detail for IT-2. However, not only the internal improvements of each one of the 
components and its functionalities will be detailed, but also the main changes in the whole FISHY 
architecture impacting WP3. 

After releasing the FISHY architecture for IT-1 in month 18, some improvements have been proposed 
for IT-2. The main updates in the FISHY architecture related to TM (WP3) are: 

• Threat/attack repository becomes a Central repository and event-based messaging system. 
This change is mainly due to the need of having, on one hand, and a single repository where 
both output data from tools can be stored; on the other hand, it becomes the main way of 
communicating data among tools. 

• SPI’s modules Access Policy and Identity Manager becomes transversal to the whole 
architecture, as it was defined within IT-1. These modules deploy access control among all 
other architecture units. 

• FISHY appliance to interact with the infrastructure. In order to smooth the deployment of the 
FISHY agents and their connection with the data collectors in the infrastructure, this new 
component has been proposed and added to the whole workflow in the architecture. 

• FISHY Dashboard not only relates to IRO but the rest of FISHY tools. Although FISHY Dashboard 
does not belong to WP3 (but WP5), the architectural change is shown because it impacts on 
SPI-Identity Manager/Access Policy functionality. The GUI of all the TIM tools will authenticate 
through SPI to access the FISHY dashboard. 

The matching between the requirement proposed by use cases providers and functionalities/modules 
in TM is shown in Table 1. Apart from these general architectural changes, at the TM internal level, 
new modules fulfilling new requirements or enforcing already considered requirements in IT-2 have 

been added. Specifically, Trust Monitor and Smart Contract modules have been designed and 
integrated in TIM for IT-2, the first one covering remote attestation functionality for integrity 
evaluation of the FISHY Appliance, and the latter covering trustworthy mechanisms and collaboration 
among different stakeholders. Also, the Zeek tool matches the network performance monitoring and 

 

Figure 1. Update of the FISHY architecture for IT-2 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 14 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

anomaly detection requirements of the TIM module, also contributing to the development of security 
metrics. 

Table 1. TM functionalities 

Block  Functionality Modules Tools 

SPI 

Identity Management/ Privacy 
enforcement 

Identity Manager  Keycloak 

Access Control/Privacy 
enforcement 

Access Policy XACML 

(Low-level raw) Data Management  
Data Management / 
Adaptation 

RabbitMQ 

(Low-level raw) Data Management  
Data Management 
/Anonymization 

Transformational 
data module  

TIM 

Vulnerability assessment 
Vulnerability 
assessment  

Wazuh, VAT, LOMOS 

Incident Detection  Incident Detection  
XL-SIEM, PMEM, Zeek 
(Network Monitoring) 

Mitigation Mitigation PMEM 

Prediction and estimation of risks 
Prediction and 
estimation of risks 

RAE 

Remote Attestation Trust Monitor TPM 2.0 

Trustworthy mechanisms and 
collaboration among stakeholders  

Smart Contracts Smart Contracts 

Extension/ Expansion scalability  Smart Contracts Smart Contracts 

Global security events storage Central Repository 
Relational database 
Pub/Sub 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 15 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Finally, in Figure 2, it is shown the detailed architecture for IT-2 of all the modules involved in Trust 
Manager (TM, WP3). 

The general flow of data to the TIM tools is as follows, data collectors read data from the infrastructure 
and send it to their respective agents in the FISHY appliance, if necessary, the connection is provided 
by NED as shown in the figure. FISHY appliance sends this data to the SPI data management. This 
module may forward the data to each one of the TIM tools (and also raw data is stored in the Central 
repository) or can process the data to apply data formatting/anonymization or to apply privacy rules. 
The output from the SPI data management goes to each one of the TIM tools in the FISHY central 
services, again, if necessary, NED can provide the connectivity. Then data reach each one of the TIM 
tools, which process the data and writes the output to the Central repository. Depending on the tool 
this output can be alerts, events, logs, etc. Output data written in the Central Repository is available 
for other blocks in other work packages, such as IRO. Detailed workflows are shown in sections 3 and 
4, Figure 3 and Figure 4. 

 
Figure 2. Architecture in IT-2 related to WP3 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 16 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

3  Security & Privacy Infrastructure Design 

In the second iteration of the FISHY Project, the Security & Privacy Infrastructure (SPI) module acquired 
a more well-defined role with tasks that required constant and all-around communication with the 
other modules of the project. As it was described in Deliverable 3.1, SPI has the purpose to provide an 
interface between low-level components and higher-level modules, in the sense that it manages the 
raw data acquired by the sensors placed in the infrastructure under study and drives them to be 
measured comparatively with the security metrics relevant and defined according to the security 
objectives of the company under study. Besides managing data collected, SPI also performs a key role 
on FISHY related to identity and access management to the platform. It is on SPI that is defined who 
should have access to the platform and the different roles that can access it and what could be done 
according to the role that the user has associated with. 

 

 

Figure 3. SPI Workflow 

Figure 3 represents the SPI workflow and is representative of the main functions related to this 
module, namely identity management, access policy, and data management including privacy 
enforcement features (e.g., anonymization). As shown, there is provision for raw data normalization 
when necessary to format event data to a common representation that posteriorly is stored in a 
Central Repository or is processed by the TIM tools. Another workflow is associated with an access 
request triggered by the user and is managed by Keycloak system which perform authentication and 
authorization verification processes, granting or rejecting access accordingly to the policy rules 
defined.  

3.1 Identity Management and Access Policy  

The Identity and Access Management capabilities of FISHY are developed with the SPI module, which 
is the component responsible to coordinate and grant access to users who use all the other FISHY 
modules. In the second iteration of the Project, it is intended that this access control module extends 
its features to control the access to all the technologies and tools that are part of the FISHY Platform. 
As it was designed for the first iteration of the Project, the Access Control (AC) unit serves OpenID 
Connect (OIDC) based on RESTful Technology. This solution is designed to have a centralized 
authorisation server capable of implementing the OAuth2 standard, complemented by an 
authentication layer based on the OpenID Standard. OpenID Connect remains the implemented 
centralized authentication system, capable of requiring servers and clients, or tools and users, to 
possess a unique ID and shared key to access the platform. The protocol used specifies the mechanism 
to get Access Tokens (AT), to allow access to software services. The OpenID protocol is used with the 
intent to enforce authentication on the flow of information across the whole FISHY platform. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 17 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

All data transactions across the platform are dependent on a correct Identity Management process, 
which in this case is performed through JWT (JSON Web Tokens) capable of providing authentic 
(signed) claims between entities and components.  

Regarding access policies, these are being developed to define a set of conditions that should be 
satisfied to grant subject access to a desirable object, system, or information. During the development 
of this document, the access policies are mostly implemented following a role-based access control 
(RBAC), but with more refinement, it is possible that an attribute-based access control (ABAC) model 
would be also used. Following Deliverable 3.1[1], the Policy Architecture will be based on XACML, 
Extensible Access Control Markup Language, which is an open standard for access control 
architectures, responsible for the management of rights, evaluation, and enforcement of access 
policies. 

3.2 Data Management  

As seen on the SPI Workflow presented before, this module has the feature to receive raw data from 
the sensors or tools implemented in the premises of the organisation under study and transform them 
into normalized data. Is intended that the FISHY Platform supports the collection and sharing of a vast 
amount of data produced by different components and be capable of exchanging data within the 
elements of the FISHY architecture. To support this capability, it is essential to remember that it is 
supposed to exist a constant production of data in different formats and standards associated with the 
use of different tools. For that reason, is important to manage and adapt all data collected and 
transform those into a unique standard and form, such as the Common Event Format (CEF). The use 
of CEF was already proposed in Deliverable 3.1[1] of the FISHY Project and is characterised by being a 
format used by several monitoring tools and security devices. CEF works with key/value arrangement 
and their manipulation makes it easy to incorporate JSON/JWT and implementations over Syslog, 
whenever necessary.   

3.2.1 Privacy enforcement 

The privacy enforcement feature within the FISHY project is related to the implementation of security 
policies in XACML that can be able to guarantee the privacy of data and users accordingly to the 
security objectives and requirements defined by the object (organisation) under study. This privacy 
interface is also very intimate to the concepts of adaptation and anonymization presented in D3.1[1]. 
The adaptation feature will act as transformer, mapping the raw data received through the collectors 
implemented and the edge storing into the Central Repository. These will only include the necessary 
attributes to support both functional and non-functional system requirements. The anonymization 
concept is associated with a conversion of processed data to preserve the privacy of users and comply 
with regulatory requirements. Since data in a supply chain are intended to be transferred to more than 
one organisation it is important to secure that unnecessary information is shared with other 
organisations or entities, to reduce the risk of unauthorized disclosure of personal data.  



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 18 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

4 Trust & Incident Manager Design  

During the IT-1 phase of the project, the development of TIM focused on a minimum viable 
demonstrator that served as a validator of the architecture design and a proof-of-concept of the 
proposed data flow. The implementation and integration of a chosen tool, Wazuh, demonstrated the 
ability to consume data from a use case, forward it for analysis, store it in the Central Repository and 
send out a notification when an anomalous event is detected. IT-1 established a template for further 
developments of TIM in the IT-2 phase of the project, which now comprises the various modules and 
services offering holistic cybersecurity protection of the monitored infrastructures. 

 

Figure 4 presents the data flow of gathered metrics from the monitored infrastructure up to the 
platform, where they are analysed, correlated and the results are stored in the Central Repository, 
which, through its pub/sub mechanism, also allows instant notifications of new results. These 
notifications can be used by either other FISHY components for further analysis or informing system 
administrators of potentially malignant events. 

This figure also includes Data Collectors as the first link in the chain. This concept was introduced during 
the IT-2 phase of the project. Data Collectors reside inside the monitored infrastructure and forward 
their collected data to tool agents residing on the FISHY Appliance, with SIA (NED) providing secure 
access to the underlying architecture. 

4.1 XL-SIEM  

The XL-SIEM is thoroughly described in D3.1 [1]. After this delivery, during the subsequent months, the 
XL-SIEM has significantly improved its capacities to better accommodate the FISHY use case needs, as 
described in D6.3[3]. 

The asset was improved both on the client and server sides. At the CyberAgent (CA), new sensors were 
fully integrated, making it possible to work with new data collectors such as IoT devices, RabbitMQ 
servers or Cisco controllers. Aside from that, during the deployment of the CA, we simplified some 
deployment steps. 

At the server, new rules have been developed, increasing the tool correlation capacity, and improving 
the RAE calculation algorithms (more detail in section 4.3) 

 

Figure 4. TIM tools workflow 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 19 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

In the Wood-based Panels Trusted Value-Chain (WBP), the XL-SIEM and the CyberAgent (CA) were 
deployed in the SONAE infrastructure in a dedicated Virtual Machine (VM). It serves as a bridge 
between the XL-SIEM and SONAE’s IoT Devices and CISCO controller. Aside from that, a new correlation 
rule that compares the same users’ login in different servers has sign-in. 

 

Figure 5. Wood-based Panels Trusted Value-Chain XL-SIEM deployment 

For the Securing Autonomous Driving Function at the Edge (SADE) the CA was deployed together with 
the Kubernetes deployment and is receiving logs for the RabbitMQ and Nginx servers. We also worked 
on new rules to detect SQL-Injection attacks.  

 

Figure 6. Securing Autonomous Driving Function XL-SIEM deployment 

4.2 Wazuh  

Wazuh has already been described in D3.1 [1]. During IT-2, developments of Wazuh are focused on 
integration into the platform architecture and improving its detection capabilities for threats specific 
to our use cases. 

In its most common deployment mode, Wazuh uses agents deployed on devices to gather logs and 
monitor file integrity. This deployment mode already fits well with the established architecture of the 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 20 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

FISHY platform, as the data flow of Agent -> Receiver -> Server matches the FISHY concepts of Data 
Collector -> Appliance agent -> Server. 

Wazuh also offers agentless monitoring, where the data collection process has to be provided by some 
other means. This deployment mode is usually used on devices like routers or switches, where agent 
cannot be installed, but it also provides an opportunity for a less intrusive deployment in production 
systems. For agentless data collection, Wazuh supports various protocols, such as SSH, WMI or 
NetFlow. During IT-2, support for data collection via RabbitMQ has been developed and used to 
retrieve data from the Farm-2-Fork use case (F2F). 

We also worked on the implementation of new custom rules that can detect connection attempts of a 
device with an unauthorized DID (Distributed ID). 

4.3 RAE  

The Risk Assessment Engine (RAE) is a Python-implemented tool of ATOS that can perform risk 
assessment thanks to the information received from XL-SIEM, the Vulnerability Assessment Tool (VAT) 
and other tools.  

The R-implemented risk assessment models that are part of RAE, are affected by several variables, 
such as target configurations, network topology, attack vector followed by the malicious agent, and 
indicators, that are a representation of some status, action or omission related to the cyber risk 
considered in the risk assessment model and vulnerabilities. 

RAE internal workflow: 

1. RAE receives information from the infrastructure from Wazuh and XL-SIEM using a Cyber Agent 
(CA). 

2. This information updates the status of one or various indicators associated with one or various 
risk models. 

3. The update of one or various indicators starts a new risk assessment evaluation, where all the 
indicators, that is, the status of the infrastructure and status of the attack, and asset and 
organization information are considered. 

4. A Risk Report is generated that can be seen at the RAE user interface, with a global risk position 
with qualitative and quantitative values. 

5. Some selection of information from the risk report is sent to the Central Repository in Common 
Event Format (CEF), as stated in Figure 7. 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 21 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

The events received from Wazuh and XL-SIEM are mapped to the indicators. A new risk assessment is 
automatically launched each time a status modification is detected for an indicator. 

 

4.4 PMEM 

Currently, it is estimated that 65% of the attacks in a network are known. The access control, 
authentication mechanism and encryption algorithms work as a first line of defence against network 
cyber-attack. The Intrusion Detection Systems (IDS) works as the second line of defence against cyber-
threat. PMEM can work as a second line of defence to detect anomalies in networks system. PMEM is 
an IDS based on Machine Learning approaches to detect known and unknown anomalies in a network 
system entry. Irregular network activity is considered an anomaly. New anomalies, not seen before, 
can appear anytime. Thus, an IDS needs to detect known and unknown anomalies. The workflow of 
the PMEM consists of the following steps, as already described in D3.1[1]:  

Data Collection Agent: PMEM contains a data collection agent which captures the real network traces 
from the use case infrastructure. The network traces contain raw information captured from the main 
router of the organization which contains all the incoming and outgoing traffic within the network.  

Feature Extractor: The features are extracted from the raw traffic for Machine learning (ML) model 
training.  

API: An API is developed for getting these features to be used as Input for ML Model. These features 
will be forwarded to the PMEM tool with the help of the FISHY Appliance.  

The previous three components are not shown in Figure 8 because they are part of the data collectors 
and FISHY appliance shown in Figure 2. 

ML Based Detection Module: The prediction performed by the PMEM ML module workflow is shown 
in Figure 8. The first module is based on One Class Support Vector Machine (OCSVM). This module aims 
to classify normal and abnormal traffic. The entries that have not been classified as normal traffic are 
passed through supervised and an additional layer of OCSVM filter to classify the entries into a certain 
type of attacks (at least, 7 known different categories), unknown attack or normal. The predictions 
performed by PMEM will be stored in the central repository to be used by IRO and possible suggestions 
will be given for each type of attack which will be used by the IRO to create and intent to do the possible 
configuration in the network with the help of the EDC.  

The improvements in PMEM for the second iteration of the project are focused on the ML Based 
Detection Module. The current version of the PMEM is using both supervised and unsupervised 
machine learning approaches to detect and classify known and unknown network attacks. The 

 
Figure 7. RAE workflow 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 22 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

supervised machine learning models are trained to detect known cyber threats while an unsupervised 
model is trained to detect unknown or zero-day exploit attacks.   

 

PMEM was already deployed in one of the use cases, F2F, for IT-1 and doing detection in a real-time 
scenario. The data collection agent will be deployed in the FISHY appliance for IT-2 and data will be 
forwarded with the help of the SPI to the ML Based Detection Module. The final prediction and 
recommended suggestion will be stored in a Central Repository to be used by other FISHY modules. 

4.5 Trust Monitor  

This section describes the implementation details of the Trust Monitor (TM), a subcomponent of the 
TIM module in the FISHY architecture, which has the aim of providing periodic remote attestation of 
the FISHY appliance, and the infrastructural nodes present in the enterprise domain and protected by 
the FISHY solution. Figure 9 represents a high-level overview of the FISHY architecture and highlights 
the logical positioning of the TM inside it.  

 

 

Figure 8. ML Based Detection Module Overall Internal working 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 23 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Figure 9. FISHY high-level architecture 

The Trust Monitor (TM) has been developed with a modular architecture, whose subcomponents 
are represented in Figure 9 and described in the following: 

• TM Core Application is the main component in the TM as it manages the central high-level logic 
of the TM framework. It has the task of 1) receiving registration requests for the various 
entities to be attested (e.g. physical or virtual compute nodes, IoT devices), hierarchically 
organized in order to reflect the real configuration of the enterprise infrastructure; 2) starting 
the attestation process on each registered entity; 3) building the attestation reports for the 
various entities by aggregating the attestation results related to each of its sub-components 
and finally 4) publishing the attestation results to the Central Repository via a RabbitMQ 
queue. 

• Connectors allow the TPM Core Application to interact with Databases and Attestation 
Adapters. In particular, Database Connectors expose APIs for accessing instances, whitelists or 
integrity verification information; the Adapters’ Connector allows the TM to interact with 
different attestation frameworks by dynamically loading the corresponding Attestation 
Adapters specified in a configuration file. 

• Attestation Adapters allow to instantiate different remote attestation workflows, each one 
with its verification logic depending on the type of node; this enables the TM to attest nodes 
with different architectures (e.g. x86, ARM, RISC-V) and Root of Trusts (e.g. hardware TPM, 
ARM TrustZone, Intel SGX). Attestation Adapters enclose all the interaction logic with a specific 
attestation framework, exposing a common interface to the Adapters' Connector, and 
standardizing the format of the attestation results for the various entities attested through 
different attestation solutions. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 24 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

• Databases store all the information regarding the various entities to be attested, the whitelists 
and other information used by the attestation frameworks to carry out the integrity check, the 
reliability policies and the attestation results produced by the TM framework. 

• Attestation Result Queue collects all the attestation results produced by the various attestation 
frameworks and published by the Attestation Adapters in a standard format, making them 
available to the TM Core Application, which in turn will use them to create aggregate 
attestation reports for entities organized hierarchically, based on the configured integrity 
policies. 

 

Figure 10. Trust Monitor subcomponents 

Figure 10 represents the interaction workflow of the TM with the other components of the FISHY 
architecture, adaptable for the different use cases of the FISHY platform. The TM starts the attestation 
process on the infrastructural nodes by sending the Attest Infrastructure command to the TM Agent 
deployed in the FISHY Appliance. At this point, the attestation frameworks installed in the FISHY 
Appliance will start the periodic remote attestation process of the customer infrastructure; such a 
process consists of sending an attestation request to each node deployed in the infrastructure and 
evaluating the integrity report, which contains tamper-proof evidence on the health state of the node 
in question. For this to happen, an Attestation Agent (AA) must be installed on each infrastructural 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 25 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

node to be attested, i.e. a service with the task of receiving attestation requests and responding to 
them with an integrity report, whose reliability is based on the root of trust provided by the specific 
node. When the attestation framework has assessed the integrity state of the entity, it sends the result 
of the attestation to the corresponding Adapter, which converts it into a standard format and publishes 
it on the internal queue available to the TM. As soon as all the attestation reports relating to the various 
entities present in the infrastructure are available, the TM aggregates an attestation report for the 
entire infrastructure, keeping also into consideration the attestation policies established for the overall 
assessment of the trustworthiness level of the infrastructure. Then, the TM publishes the aggregate 
report on the Central Repository via a RabbitMQ queue, in order to make it available to all components 
of the FISHY architecture interested in it. In particular, the FISHY Dashboard will use the report to view 
in real-time the current health status of the infrastructure nodes, while the Mitigation module will 
analyse the result of the report and, in the case of integrity failure, will send the IRO-specific intents as 
a remedy for the breach. The IRO is then responsible for transmitting them to the Enforcement & 
Dynamic Configuration (EDC) module in the form of high-level security policies. 

 

Figure 11. TM interaction workflow with the other components of the FISHY architecture 

Trust Monitor deployment 

The Trust Monitor has been implemented as a set of microservices, where the Trust Monitor Core 
Application holds the central role. These services are deployed as Docker containers using the Docker 
Compose tool, which allows for quickly and efficiently instantiating all the Trust Monitor sub-
components and easily enables network interaction among them. In particular, the Trust Monitor is 
composed of four containers: one for NoSQL databases, one for relational databases, one for the 
internal queue and the last one for the TM core logic. As regards the Trust Monitor Agent, it will contain 
the Keylime framework for the attestation of physical nodes, containers deployed with different 
attestation technologies (e.g. Docker, CRI-O, container) and Kubernetes pods; other attestation 
frameworks will be available based on the type of nodes present in the infrastructure to be attested. 
Finally, the Trust Monitor Data Collectors present in the customer's infrastructure will be the 
Attestation Agents corresponding to the attestation technology used (e.g. the Keylime Attestation 
Agent), which will be installed on each of the nodes to be attested. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 26 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

4.6 Zeek  

Zeek is a passive open-source network traffic analyser that can output an extensive set of logs 
describing the network activity.  Zeek comes with multiple built-in functionalities for a range of analysis 
and detection tasks. It also provides a domain-specific scripting language for expressing arbitrary 
analysis tasks[4]. Zeek is not an active security device, like a firewall or intrusion prevention system, 
rather it sits on a “sensor,” that quietly and unobtrusively observes network traffic in a compact, high-
fidelity transaction logs, file content, and fully customized output, suitable for manual review on disk 
or in a more analyst-friendly tool like a security and information event management (SIEM) system [5]. 
As it has been said, Zeek outputs rich information-filled logs about a wide range of protocols, such as 
HTTP, DNS, and DHCP, but it also outputs a log with Zeek-generated alerts which can be triggered by 
modules written in its scripting language. These modules can be written to track any kind of metric 
with the measures gathered by Zeek which can then generate a notice when an anomaly in the traffic 
is detected. These alerts can then be forwarded through the SPI either to a tool or the Central 
Repository, allowing FISHY to closely monitor any kind of anomalies detected in the network. 

4.7 Smart Contracts  

The Smart Contracts component is responsible for ensuring the integrity of a) the recorded security 
events and b) the enforced mitigation policies. The Smart Contracts component communicates directly 
with the Central Repository of the FISHY platform (to receive this information) and stores it in the 
blockchain. The components that generate this information include SACM, TIM-WAZUH, TIM-PMEM 
and IRO while the Smart Contracts component communicates with the Central Repository through a 
RabbitMQ. 

Figure 12 depicts a high-level architecture of the FISHY platform and gives attention to the Smart 
Contracts’ placement in it. The figure emphasizes the place of the component in the general 
architecture as well as the different sub-components it consists of. 

 

 

Figure 12. Smart contracts internal organisation and relation to the high-level architecture 

The component consists of the following sub-components: 

• IPFS 

• DAPPs (Decentralized Apps) 

• Relay Server 

• Event Server 

 

https://zeek.org/


 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 27 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

IPFS 

The IPFS is a P2P (peer-to-peer) distributed file system that can be used to store and access any type 
of data (e.g. files, JSON, jpeg etc.). Considering that the information that accompanies/describes a 
security event and a policy may be large (e.g. larger than just a few bytes) and thus not appropriate for 
being stored in the blockchain, we have decided to integrate an IPFS infrastructure. The different 
events/policies along with the relevant information will be stored in a private IPFS network and we 
store in the blockchain a) the ID of the security event/policy and b) the corresponding link in the IPFS 
system. This way, the required time to store the information is reduced, compared to the case where 
we store information in the blockchain, and allows for larger data sizes. The events/policies become 
accessible via a link, which is stored in the blockchain. The IPFS guarantees that if any change happens 
to the source data, it will be detectable.  

The addition of the smart contracts component to the FISHY platform allows: 

1. The verification that a security event/policy is detected by FISHY and  
2. The guarantee that the details of an event/policy are not tampered with (these details are 

accessed through the link stored in the blockchain).  

 

DAPPs 

The DAPPs sub-component consists of the Smart Contracts that contain the logic for storing the original 
source of the data (IPFS link) and retrieving it. The DAPPs component is deployed in a private 
blockchain network, namely Quorum. This private blockchain network solution uses the IBFT (Istanbul 
Byzantine Fault Tolerance) consensus mechanism. This mechanism is one of the best regarding 
performance and transaction speed, therefore making the overall implementation very fast. 

 

Relay Server  

The Relay Server subscribes to the RabbitMQ of the Central Repository and is notified of every new 
event/policy added. The Server then composes the information in a file to store in the IPFS network. 
The Relay Server also exposes REST API endpoints connecting to the DAPPs, for the components to 
access the link for the details of the events/policies in the IPFS. 

 

Event Server 

The Event Server is mainly responsible for keeping track of all the events that are emitted from the 
smart contracts of the DAPPs sub-component. Instead of querying the blockchain directly to ensure 
that an event has been triggered (e.g when a new IPFS link is stored), the log the Event Server creates 
to keep track of the emitted events can be used to determine whether a call to the DAPPs was 
successful and check briefly its most basic details (e.g. the ID of the event/policy). 

It should be noted that all the above sub-components are designed to work as Kubernetes 
deployments. The Quorum blockchain platform is available as a Helm chart that will also be deployed 
in a Kubernetes cluster. 

 

Smart Contracts Component Deployment 

The Smart Contracts component and the relevant blockchain network will be deployed in Synelixis’ 
cloud for the lifetime of the project. However, the blockchain network which is necessary for the FISHY 
smart contracts component operation will in general be a private blockchain network as is the case for 
numerous applications/solutions in the market. This means that one or multiple nodes could be 
deployed in Synelixis, another (or another set) in ATOS, or XLAB. The FISHY clients do not need to 
contribute to the maintenance or deployment of the blockchain network. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 28 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

This method ensures that:  

1. A decentralized solution is offered since the nodes can be hosted on different premises. 
2. The data stored are secure since they cannot be deleted, and any tampering attempts are 

detectable and 
3. There is no single point of failure, since all the nodes hold replicas of the stored data, and one 

failed node cannot compromise the entire network. 

It is worth stressing that: i) the fact that FISHY relies on a private blockchain network does not decrease 
the value of the decentralized solution and ii) protecting FISHY operations through the integration of 
blockchain techniques increases the security of the FISHY platform; this does not mean that this is 
100% secure as such a security level does not exist; it means that a higher security level is reached and 
this should be considered keeping in mind the value of the protected data.  

 

Farm-to-Fork (F2F) Use Case 

In order to better demonstrate the role of the Smart Contracts Component, it would be useful to 
examine a use case on the F2F example. Let’s assume that a malicious actor is trying to login into the 
F2F platform by enacting a brute-force attack. In this case, we expect two components, SACM and IRO, 
to perform the following actions: 

 

SACM 

1. The SACM component detects the brute-force attack 
2. It composes a related security event 
3. The event is stored in the Central Repository 
4. The Smart Contracts Component gets notified by the Central Repository’s RabbitMQ about the 

addition 
5. The Smart Contracts Component produces a file with the details of the event and stores it in 

the IPFS network 
6. The link pointing to the event file is stored in the blockchain 

The above steps are depicted in the Sequence Diagram of Figure 13. 

 

 

Figure 13. Sequence Diagram for smart contracts component storing a detected security event in the F2F use case 

  



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 29 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

IRO 

1. The IRO component, after being notified of the threat, composes a mitigation policy, which 
blacklists the IP from where the login attempts have been detected 

2. The policy is stored in the Central Repository 
3. The Smart Contracts Component gets notified by the Central Repository’s RabbitMQ about 

the addition 
4. The Smart Contracts Component produces a file with the details of the policy and stores it in 

the IPFS network 
5. The link pointing to the policy file is stored in the blockchain 

The above steps are depicted in the Sequence Diagram of Figure 14 

 

Figure 14. Sequence Diagram for smart contracts component storing a policy to the blockchain in the F2F use case 

The Smart Contracts Component is used to persist the events/policies the FISHY components produce 
and ensure the integrity of the data. The data for these events/policies are immutable for every 
decision made or action enforced, and the Smart Contracts Component is a method to keep track of 
all actions taken and protect the information from malicious actors. 

4.8 Central Repository  

Formerly known as the Threat/Attack Repository, this component was renamed to Central Repository 
when it was made transversal, rather than a TIM component only. The design of merging a traditional 
CRUD-based REST API for managing data storage with a pub/sub system to allow any interested party 
to be instantly notified when new data is available for processing was a requirement most components 
shared, and it became obvious that it would be inefficient if every component needs its own storage 
solution to be developed. 

Central Repository now facilitates communication between components from every technical work 
package. In IT-2, its data model definitions have been expanded from only dealing with events and 
alerts, to the ability to store various policies, certification data and facilitate immediate responses from 
the platform thanks to the pub/sub system providing instant notifications. 

Further developments of the Smart Contracts component also allowed the development of Central 
Repository to be less dependent on verifiable data immutability. While amending data after the 
original write into the Central Repository is not a common requirement and in most cases is not even 
supported, leveraging Smart Contracts persistence of data on the blockchain gives an assurance that 
data has not been tampered with. 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 30 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

4.9 VAT 

Vulnerability Assessment Tool (VAT) provides the capabilities to detect vulnerabilities of both web 
services and infrastructure. Its suite of tools includes W3AF[6], OWASP [7] and NMAP [8]. These tools 
can be employed in various profiles and configurations that can be provided via VAT’s webUI and its 
scheduling capabilities enable multiple rounds of scans. 

This tool is especially useful to anyone who’s running a custom-built webpage or webUI, as the VAT 
tool can monitor both a development sandbox or a CI/CD environment, allowing developers to catch 
vulnerabilities early, or even production systems, showing the necessity for security patches of an 
external access point. OWASP ZAP and W3AF provide an itemized list of CVEs (Common Vulnerabilities 
and Exposures) found by scanning a web service, while the NMAP module is able to scan multiple 
targets in one scan and identify exposed services that should be connectable only on the private 
network, such as misconfigured Redis databases[9]. In IT-2, VAT received various tweaks to its webUI 
to allow better integration into the FISHY Dashboard, OWASP and W3AF have been updated to their 
newest lists of CVEs and a new post-hook adapter was developed that allows the results of VAT scans 
to be propagated to the Central Repository, where they are available for further analysis and notifying 
the system administrators of the status of their infrastructure. 

4.10 LOMOS 

LOg MOnitoring System or LOMOS, is an ML-based anomaly detection solution. Its role in the FISHY 
platform is to provide a second layer of analysis of gathered data and metrics. While most tools and 
services employed by FISHY form their own chain and process of gathering and analysing data, LOMOS 
is employed in a more passive, observational role. Instead of deploying its own data collectors and 
agents in the monitored infrastructure, it taps into the data stream of already collected metrics flowing 
to the FISHY platform and establishes a baseline for normal activity and searches for anomalous 
behaviour that a more specialised, rule-matching solution can miss. 

LOMOS consumes raw logs, that are fed into its Log parser module, which structures the logs into a 
format ready for analysis. This part of the process is unsupervised learning, meaning the incoming logs 
do not need to be in a known format or require any pre-processing, also known as “cooking”. The 
structured logs output by the Log parser are then analysed by the Anomaly detector module, which 
produces an individual, per-log anomaly score. 

 

 

Figure 15 - LOMOS internal log processing 

This second layer of analysis provided by LOMOS and the anomaly scores enables the FISHY platform 
to flag activities normally perceived as normal, benign events for additional analysis or investigation. 
Logs with an anomaly score that surpasses a threshold are persisted in the Central Repository and since 
data coming into the FISHY platform is always labelled by its source, the alerts generated by LOMOS 
allow system administrators to drill down into the sequence of events flagged as out-of-the-ordinary. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 31 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

5 Implementation in the Reference Framework 

5.1 Introduction to FISHY Reference Framework  

The FISHY Reference Framework (FRF) is a testbed environment that provides a stable platform where 
all FISHY Components and FISHY use cases can be deployed to test their functionality and integration 
with the rest of the components of the project. The FRF is available at the 5TONIC[10]. This FRF is 
composed of a set of domains (known as FISHY domains) that represent the locations where the FISHY 
components and modules are deployed to provide their functionalities.  

These FISHY Domains can be flexibly incorporated into the testbed in the form of Kubernetes (K8s) 
clusters or OpenStack [11] domains. Moreover, other external domains can also be incorporated into 
the testbed (e.g., a Domain composed of one or more Virtual Machines) using a VPN service. This 
service is also being considered to support the connectivity of external devices to the FRF, such as the 
data collector (it is currently being developed as part of IT-2). 

One of the reasons that provide the flexibility to incorporate heterogeneous domains into the FRF is 
the approach that the SIA utilizes for the communications between these domains. In this case, the 
Network Edge Device (NED), as part of the SIA module, provides secure communication between the 
different domains. These NEDs are present in each one of the domains, being each NED connected 
with other desired neighbouring NEDs through the use of IP tunnels [12]. This way, NEDs build a 
network overlay, which provides end-to-end connectivity across all the domains. The communications 
can be protected between each other through IPsec [13] mechanisms, adding an extra layer of security 
in the process. Further information about the NEDs and their overlay can be found in the official 
repository of the FISHY Sandbox [14], described in Deliverable 5.1 [15]. At the time of writing, a 
monitoring tool is being developed to verify the status of this overlay and the inter-domain 
communications, and its basis will be based on other tools, like Zabbix [16]. The development of this 
monitoring tool is also being considered as part of IT-2.   

5.2 SPI Integration  

In the previous iteration IT-1, the SPI Access policy component (Keycloak) was deployed using docker 
through the docker-compose deployment file. This allowed for a very straightforward deployment 
were using docker-compose, a Keycloak docker image could be directly downloaded from the Docker 
hub and the necessary changes to the container could be applied through the docker-compose.yml file 
instructions or by specifying a custom Dockerfile build file (e. g., environmental variables, import 
custom files, specify open ports, etc…). To integrate the Keycloak instance in the FISHY Reference 
Framework it was necessary to translate this deployment file to a Kubernetes deployment file. To 
accommodate this change some of the ease of use of using docker-compose was sacrificed. Namely, 
while using docker-compose images could be easily edited and automatically rebuilt before runtime 
by specifying a custom Dockerfile file, this was not as straightforward in Kubernetes, where images 
would need to be manually built by the user beforehand. 

For instance, for Keycloak to have SSL encryption, certificates need to be provided. Using docker-
compose, these could be simply copied to a directory in the host machine which would then be linked 
inside the container using a shared volume. In the Kubernetes deployment version these certificates 
need to be directly built inside the image beforehand, which makes the deployment process more 
cumbersome.  



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 32 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

5.3 TIM Integration  

Integration of TIM tools and components into the FISHY Reference Framework was relatively 
straightforward. The FISHY Appliance is deployed on a VM, instead of Kubernetes pods, so the 
deployment process is virtually unchanged from its normal operation, save for defining a new 
inventory file for already existing Ansible scripts.  

Other TIM components, that reside in the FISHY Control Services domain rather than the Appliance, 
were containerised from the earliest stages of implementation and as such were also no issue to 
deploy in Kubernetes instead of plain docker. 

What proved slightly challenging was the specific networking model of the FRF, the division of 
management and data network interfaces and the way they must be configured inside a pod at 
runtime. While this subject was responsible for the biggest change in the services, its impact was 
limited to the containerisation build process, not the implementation of the services themselves. 
When specifying a Dockerfile for a service, essentially describing how an image for a container should 
be built, it is usually sufficient for the last command, running the service on container startup, to be a 
simple one-liner, running a binary or calling an interpreter and providing a few parameters. The 
specifics of the FRF networking model however required an additional Bash script to be provided to 
the container that configured the network interfaces based on provided environment variables, 
however, the provided guides and examples of components that were integrated into FRF sooner 
simplified this process. 

 

 

 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 33 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

6 Conclusions 

This deliverable provides a complete description of the Trust Manager (TM) Module of the FISHY 
Platform for the 2nd iteration of the project. As it has been designed on the 1st iteration, the TM module 
is composed of two main blocks, the Security and Privacy Data Space Infrastructure (SPI) and the Trust 
and Incident Management (TIM).  

The implementation of these blocks had already been described in the WP3 documents published 
before (namely, D3.1[1] and D3.2[2]) but due to the advancements of the project and the decisions 
taken by the development team, these ideas must be adapted and updated taking into account the 
constraints that have been appearing along the development and implementation phase. 

Initially, this document describes the architecture issues of the module and the approach taken to 
satisfy all the requirements raised by the Use Case partners, and it is also presented all the 
functionalities offered by these modules correlated with the tools used. Posteriorly, it is presented the 
updated workflow of the two main blocks that composed the TM module, namely the SPI and TIM. The 
SPI section is focused on the features added to be implemented on this 2nd iteration of the project, as 
the TIM section is presented all the tools that the FISHY Platform will be served. The final section of 
the document reveals some adjustments needed to be taken towards the phase of implementation of 
the approach presented and traces the path to complete integration with the remaining modules of 
the project and with the Reference Framework. 



 

 

 

 

Document name: D3.3 Trust Manager components design and implementation (IT-2) Page: 34 of 34 

Reference: D3.3 Dissemination:  PU Version: 1.0 Status: Final 

 

References 

[1] [FISHY] – D3.1 Trust Manager components design and implementation. (IT-1) Diego López, 
Antonio; Pastor, Luis Conteras. 2021. 

[2] [FISHY] – D3.2 Trust Manager Integration. (IT-1) Marin-Tordera, Eva; Ruiz, Jose Francisco; Alonso, 
Juan Andres. 2021. 

[3] [FISHY] – D6.3 Use cases settings and demonstration strategy. Gonos, Antonis; Alvarez, Antonio. 
2022  

[4] Zeek Documentation. https://docs.zeek.org Retrieved 2022-09-28 

[5] Zeek - The Zeek Network Security Monitor. https://zeek.org/. Retrieved 2022-09-28 

[6] W3AF, Open-source web application security scanner, https://w3af.org/ (15 October 2022). 

[7]  OWASP, Zed Attack Proxy, https://owasp.org/www-project-zap/ (15 October 2022). 

[8]  Nmap: The Network Mapper, https://nmap.org/ (15 October 2022) 

[9]  Many Internet-Exposed Servers Affected by Exploited Redis Vulnerability, 
https://www.securityweek.com/many-internet-exposed-servers-affected-exploited-redis-
vulnerability (28 October 2022) 

[10]  The Linux Foundation. Kubernetes. Available at: https://kubernetes.io (12 October 2022) 

[11]  The OpenStack project. Openstack. Available at: https://www.openstack.org (12 October 2022) 

[12]  M. Mahaligam et al. Virtual eXtensible Local Area Network (VXLAN): A framework for Overlaying 
Virtualized Layer 2 Networks over Layer 3 Networks. RFC 7483. August 2014. 

[13]  T. Chown et al. IPv6 Node Requirements. RFC 8504. January 2019.  

[14]  Luis F. Gonzalez et al. FISHY-Sandbox-development. Available at:  https://github.com/H2020-
FISHY/FISHY-Sandbox-development [14 October 2022] 

[15]  [FISHY] – D5.1 IT-1 FISHY Release integrated. Manjón, Jose Manuel; Alonso, Juan; Alvarez, Antonio. 
2022. 

[16]  Zabbix LLC. Zabbix 6.2. Available at: https://www.zabbix.com (12 October 2022) 

https://docs.zeek.org/
https://zeek.org/
https://nmap.org/
https://www.securityweek.com/many-internet-exposed-servers-affected-exploited-redis-vulnerability%20(28
https://www.securityweek.com/many-internet-exposed-servers-affected-exploited-redis-vulnerability%20(28
https://kubernetes.io/
https://www.openstack.org/
https://github.com/H2020-FISHY/FISHY-Sandbox-development
https://github.com/H2020-FISHY/FISHY-Sandbox-development
https://www.zabbix.com/

