
This document is issued within the frame and for the purpose of the FHISY project. This project has received funding from the European

Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 952644. The opinions expressed and arguments

employed herein do not necessarily reflect the official views of the European Commission.

This document and its content are the property of the FISHY Consortium. All rights relevant to this document are determined by the

applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents

are not to be used or treated in any manner inconsistent with the rights or interests of the FISHY Consortium or the Partners detriment and

are not to be disclosed externally without prior written consent from the FISHY Partners.

Each FISHY Partner may use this document in conformity with the FISHY Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;

CI: Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

A coordinated framework for cyber resilient supply chain systems over complex ICT

infrastructures

D5.2 IT-2 FISHY release integrated

Keywords:

Integration, Framework, Tool

Document Identification

Status Final Due Date 30/04/2023

Version 1.0 Submission Date 28/04/2023

Related WP WP5 Document Reference D5.2

Related
Deliverable(s)

D5.1
Dissemination Level
(*)

PU

Lead Participant TID Lead Author Jose Manuel Manjón

Contributors
TID, TUBS, UPC, UC3M,
ATOS, UMinho, STS,
SYN, XLAB

Reviewers

OPT/Entersoft (Antonis
Gonos)

ATOS (Antonio Álvarez)

Document name: D5.2 IT-2 FISHY release integrated Page: 2 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Jose Manuel Manjón Cáliz TID

Dulce Artalejo Sacristán UC3M

Raúl Martín Celaya UC3M

Borja Nogales Dorado UC3M

Francisco Valera Pintor UC3M

Iván Vidal Fernández UC3M

Eva Marín Tordera UPC

Jan Antić XLAB

Hrvoje Ratkajec XLAB

Mounir Bensalem TUBS

André Oliveira UMinho

Henrique Santos UMinho

Pedro Magalhães UMinho

Grigoris Kalogiannis STS

Jorge Martínez Olmo ATOS

Guillermo Yuste ATOS

Alexandra Lakka SYN

Document History

Version Date Change editors Changes

0.1 15/02/2023 TID ToC

0.2

15/03/2023 TID ToC update

28/03/2023 TID Contribution to sections 1 and 5

29/03/2023 UC3M Contribution to sections 4 and 5

30/03/2023 UPC Contribution to sections 3 and 5

31/03/2023 XLAB Contribution to section 5

03/04/2023 TID Contribution to section 4

0.3
04/04/2023 TUBS Contribution to sections 2 and 5

04/04/2023 UMinho Contribution to section 5

Document name: D5.2 IT-2 FISHY release integrated Page: 3 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

10/04/2023 STS Contribution to section 5

0.4 13/04/2023 ATOS Contribution to section 5

0.5 14/04/2023

TID

Small modifications on the whole document UC3M

UPC

0.6 21/04/2023 TID Final version to be reviewed

0.7 25/04/2023 ATOS Reviewed version

0.8 25/04/2023 OPT Reviewed version

0.9 28/04/2023 TID Final version for Quality Check

0.9a 28/04/2023 ATOS Quality Assessment

1.0 28/04/2023 ATOS Final version submitted

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Jose Manuel Manjón (TID) 28/04/2023

Quality manager Juan Andrés Alonso (ATOS) 28/04/2023

Project Coordinator Antonio Alvarez (ATOS) 28/04/2023

Document name: D5.2 IT-2 FISHY release integrated Page: 4 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information .. 2

Table of Contents .. 4

List of Tables .. 5

List of Figures ... 6

List of Acronyms .. 7

1 Introduction ... 10

1.1 Purpose of the document .. 10

1.2 Relation to another project work .. 10

1.3 Structure of the document .. 10

2 Intent-based Resilience Orchestrator .. 11

2.1 IRO architecture and workflow ... 11

3 Dashboard .. 14

3.1 Dashboard Functionalities ... 14

3.2 Dashboard’s Internal Architecture .. 16

4 Secure Infrastructure Abstraction .. 17

4.1 SIA Northbound interface (NBI) and Orchestration Function (OF) 18

4.2 SIA Southbound interface (SBI) ... 19

4.3 SIA Network Edge Device (NED) overlay ... 20

4.4 SIA Monitor (MON) .. 21

4.5 SIA Centrally Controlled IPSec (CCIPS)... 21

5 FISHY Reference Framework .. 22

5.1 SIA integration ... 26

5.2 XL-SIEM integration ... 27

5.3 RAE integration .. 28

5.4 SPI integration ... 29

5.5 IRO integration .. 31

5.6 Central Repository integration .. 32

5.7 PMEM integration ... 34

5.8 Dashboard integration .. 35

5.9 SACM Integration .. 35

5.10 Platform Monitoring Tool .. 36

5.11 Smart Contracts ... 38

6 Conclusions .. 39

References ... 40

Document name: D5.2 IT-2 FISHY release integrated Page: 5 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1. Communication interfaces of IRO .. 13

Table 2. Tools in each use case for IT-2 ... 15

Table 3. Formal definition of the SIA interface (inbound) ... 19

Table 4. FRF Integration status table .. 24

Table 5. Virtual networks table in FRF ... 25

Table 6. SIA inbound interfaces. .. 27

Table 7. SIA outbound interfaces. .. 27

Table 8. XL-SIEM inbound interfaces. .. 28

Table 9. XL-SIEM outbound interfaces. .. 28

Table 10. RAE inbound interfaces. ... 28

Table 11. RAE outbound interfaces. .. 29

Table 12. SPI inbound interfaces. .. 29

Table 13. SPI outbound interfaces. .. 31

Table 14. IRO inbound interfaces. ... 31

Table 15. IRO outbound interfaces. ... 32

Table 16. Central Repository inbound interfaces. ... 32

Table 17. Central Repository outbound interfaces. ... 33

Table 18. PMEM inbound interfaces. .. 34

Table 19. PMEM outbound interfaces. .. 34

Table 20. Dashboard inbound interfaces... 35

Table 21. Dashboard outbound interfaces. ... 35

Table 22. SACM inbound interfaces. .. 36

Table 23. SACM outbound interfaces. ... 36

Table 24. Smart Contracts inbound interfaces. ... 38

Table 25. Smart Contracts outnound interfaces. ... 38

Document name: D5.2 IT-2 FISHY release integrated Page: 6 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1. IRO Dashboard .. 11

Figure 2. IRO workflow .. 12

Figure 3. FISHY Dashboard .. 14

Figure 4. FISHY Dashboard view of F2F use case ... 16

Figure 5. Overview of the SIA architecture .. 17

Figure 6. Overview of the NED overlay .. 20

Figure 7. FISHY Reference Framework diagram .. 23

Figure 8. Panel of the SPI-IDM tool.. 37

Document name: D5.2 IT-2 FISHY release integrated Page: 7 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

AI Artificial Intelligence

API Application Programming Interface

CDN Content Delivery Network

CEF Common Event Format

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

CCIPS Centrally Controlled IPSec

D5.2 Deliverable number 2 belonging to WP5

E2E End-to-end

EDC Enforcement and Dynamic Configuration

F2F Farm-to-Fork

FCS FISHY Control Services

FRF FISHY Reference Framework

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HPL High-level Policy Language

IDCO Inter-Domain Connectivity Orchestrator

IKE Internet Key Exchange

IPSec IP Security

IRO Intent-based Resilience Orchestrator

JSON JavaScript Object Notation

K8s Kubernetes

L2S-M Link-Layer Secure connectivity for Microservice platforms

MANO Management and Orchestration

MON Monitoring

NBI NorthBound Interface

NED Network Edge Device

NFV Network Function Virtualization

Document name: D5.2 IT-2 FISHY release integrated Page: 8 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /
acronym

Description

NFVI Network Functions Virtualization Infrastructure

NLP Natural Language Processing

NS Network Service

NSF Network Security Functions

OF Orchestration Function

ONOS Open Network Operating System

OSM Open-Source MANO

OvS Open Virtual Switch

PMEM Predictive MaintenancE Monitoring

PoC Proof of Concept

PromQL Prometheus Query Language

RAE Risk Assessment Engine

ReM Remediation Module

REST REpresentational State Transfer

SACM Security Assurance & Certification Management

SADE Securing Autonomous Driving Function at the Edge

SBI SouthBound Interface

SeCM Security Capability Model

SIA Secure Infrastructure Abstraction

SPI Security & Privacy Data Space Infrastructure

SPI-DM Security & Privacy Data Space Infrastructure – Data Management

SPI-IDM Security & Privacy Data Space Infrastructure – Identity Management

SSL Secure Sockets Layer

SSO Single Sign-On

TCP Transmission Control Protocol

TIM Trust & Incident Manager

Tx.y Task number y belonging to WP x

VAT Vulnerability Assessment Tool

VM Virtual Machine

VNF Virtual Network Functions

VPN Virtual Private Network

VxLAN Virtual Extensible LAN

Document name: D5.2 IT-2 FISHY release integrated Page: 9 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /
acronym

Description

WBPTV Wood-based Panels Trusted Value-Chain

WP Work Package

XL-SIEM Cross-Layer Security Information and Event Management

XML eXtensible Markup Language

YANG Yet Another Next Generation

Document name: D5.2 IT-2 FISHY release integrated Page: 10 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This deliverable reports the status of the FISHY Reference Framework (FRF) and the tools deployed
on it, from the point of view of the implementation. Also, describes the modules that are part of this
Work Package 5 itself, the Intent-based Resilient Orchestrator (IRO), the Dashboard and the Secure
Infrastructure Abstraction (SIA).

All the software developments can be found in a GitHub repository created specifically for this
project: https://github.com/H2020-FISHY.

1.2 Relation to another project work

This document collects all the developments of the Work Packages of the project, specifically WP3
and WP4. All the tools developed previously are implemented on the FRF as final stage of the project
and will be integrated to work among them. Also, in contradistinction to D5.1, this deliverable shows
a mature and evolved framework, with an intense work on developments from tools providers.

1.3 Structure of the document

This deliverable is divided into 4 main sections:

- Section 2 resumes the work done on the Intent-based Resilient Orchestrator (IRO), referred
to task 5.1.

- Section 3 reports the status of the Dashboard, related to task 5.2.
- Section 4 updates the work done on the Secure Infrastructure Abstraction (SIA), also referred

to task 5.2.
- Section 5 presents the status of the FISHY Reference Framework and the integration

procedure of the different tools that will comprise the FRF.

https://github.com/H2020-FISHY

Document name: D5.2 IT-2 FISHY release integrated Page: 11 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

2 Intent-based Resilience Orchestrator

The Intent-based Resilience Orchestrator (IRO) aims at automating the interactions between the user
defining high level intents and the system applying high level policies, using natural language
processing (NLP) and AI techniques. Furthermore, the IRO is also designed to assure the notification
of the users with the events and reports received from different monitoring tools of TIM component,
as well as Smart Contracts verifications. The front end of the Dashboard for the FISHY user is shown
in Figure 1.

Figure 1. IRO Dashboard

2.1 IRO architecture and workflow

IRO is composed by several blocks, which are the IRO-Dashboard, the intent manager, the policy
configurator, the Learning & Reasoning component and the knowledge base. IRO-Dashboard is a
python-based web application that enables several features for the user such as visualizing reports
and security event presentation from different monitoring tools in a single location/screen, allowing
the system administrator to define actions in the form input intents that can be translated into
network configurations with the help of lower-level FISHY components such as the EDC for
enforcement and the Central Repository for data sharing. The intent manager is the IRO module that
translates the input text in the intent into a structured format containing several fields such as the
intent type and parameters. In the current version, the intent translation is using predefined queries
for Elasticsearch engine in order to match in the input text to a predefined ontology. Several queries
have been defined and can be enriched in the future to allow the translation of complex input text.
An example of the queries used is a search of a word or a part of word, and a search of an attribute
related to word. Those queries can be used to identify and match the input text to a set of
predefined intent structures, which then can be used to recommend a form of a policy to be filled by
the user through the Dashboard. The intent manager is also responsible for providing instructions to
the user, for listing the intent templates, and it can validate policy generation after receiving
confirmation from the user.

Another important module in IRO is the policy configurator, which receives a formatted intent
translated by the intent manager, and (with the help of the knowledge base) is used by the policy

Document name: D5.2 IT-2 FISHY release integrated Page: 12 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

configurator to generate high-level security policies (XML schema for EDC) and attacks information (a
JSON file used by EDC to enforce policies). The knowledge base is a module that uses Elasticsearch to
store the intent definition and policy templates and manages the CRUD operations. The Learning and
Reasoning module in the current version are running two RabbitMQ consumers: one for Central
Repository events, and another for the Smart Contracts verification. The received events are cashed
in the system to be used for user notification and alerts. This module can extract information from
events and filter them based on the source, type of event, and the defined intents.

In this diagram (Figure 2), we illustrate the component level diagram of the IRO, considering the
inter-component communication and the communication between IRO and other FISHY components.

Figure 2. IRO workflow

The workflow can be described as follows:

• [A|1] IRO receives the events stored in the Central Repository by different TIM tools, and
verification events posted by Smart Contracts component.

• [A|2] The received events are processed by the Learning & Reasoning components and a
notification is created and presented in the IRO Dashboard.

• [A|3] The administrator or the FISHY user can access the interface and receive notifications
through an alert center.

• [A|4] The events received from the central repository, which need to trigger a decision-
making process, trigger the IRO Policy Configurator using a predefined intent associated to
events from the Learning & Reasoning component.

• [A|5] The configured policies are stored in the Knowledge Base temporally to be checked for
validity and confirmation.

• [B|1] The admin sends intents through the Dashboard.

• [B|2] The Intent Manager reads intent templates, and policy templates from the Knowledge
Base.

• [B|3] The Intent Manager translates the received intents using existing intent templates.

• [B|4] The Intent Configurator reads policy templates from the Knowledge Base.

• [B|5] The Policy Configurator receives formatted intents from the Intent Manager.

• [B|6] The Intent Manager receives configured policies from the Configurator, solves conflicts
with other policies and checks if a user intervention is needed.

• [B|7], [B|8] After receiving policies, the Intent Manager notifies the admin through the IRO
Dashboard using an alert center developed in the frontend interface.

• [B|9] The admin, who has an overview of the current reports received from different tools,
confirms actions through the IRO Dashboard, with the help of a predefined list of actions.

Document name: D5.2 IT-2 FISHY release integrated Page: 13 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

• [B|10], [B|11] The Intent Manager posts the confirmed policies in the Central Repository
under a policy endpoint.

• [B|12] Central Repository sends events about policies to the EDC through the RabbitMQ
mechanism.

Table 1. Communication interfaces of IRO

Component Origin Data
Type of

communication
Status

Central
Repository

TIM tools

SACM

Reports in CEF
format

REST HTTP Implemented

Central
Repository

TIM tools

SACM

Reports in CEF
format

RabbitMQ Implemented

Smart Contracts
Smart Contracts
validation in CEF

format
RabbitMQ Implemented

Document name: D5.2 IT-2 FISHY release integrated Page: 14 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

3 Dashboard

The main objective of the FISHY dashboard is to provide a unified, harmonised and consistent web
application where users of the FISHY framework are able to perform the different set of actions for
which they are responsible for. The dashboard is basically a Node.js based web application that
provides a graphical user interface (GUI) for visualizing and managing data from multiple tools in a
centralized space. It provides a way for the FISHY users to interact with all the tools and provides a
unified overview to manage the front-end of the different tools. The FISHY dashboard can be
deployed either in cloud resources made available by the FISHY platform provider or at the client’s
premises (at client’s owned cloud resources). This allows FISHY to provide flexibility of the FISHY as
the dashboard can be deployed in a centralized manner or on client’s premises depending on the end
user requests. During this last year of the project, there are two versions of the dashboard working:
one instance is responsible to manage the two FISHY use cases, F2F and WBP TRUST, while another
instance is working separately managing one FISHY use case, SADE. The front-end of the dashboard
for the FISHY user is shown in Figure 3.

Figure 3. FISHY Dashboard

3.1 Dashboard Functionalities

Different functionalities provided by the FISHY dashboard are discussed in this section.

Dashboard access

The gate to the FISHY dashboard is via a web browser accessible through any platform. Accessing the
dashboard requires the user to log-in using the provided credentials. Once the user is logged, the
user is redirected to the homepage of the application, and certainly the system does not close the
connection until either a logout or session timeout occurs.

Single Sign-On

One of the key features provided by the FISHY dashboard is the support of a single sign-on (SSO)
mechanism for different users. SSO allows users to log in once and access multiple applications

Document name: D5.2 IT-2 FISHY release integrated Page: 15 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

without having to enter their credentials again. The credentials entered by the user on FISHY
dashboard are verified using the centralized Keycloak server provided by an SPI module (SPI identity
management). After the verification of the credentials, an access token is generated which is used
throughout the session to authenticate the users within the different tools.

Multitenancy:

The multitenancy in the FISHY dashboard is achieved with the help of Keycloak and user scope. The
scope and access of the users to different tools is managed internally with the help of the Keycloak.
Multitenancy in a dashboard is the ability to serve multiple tenants, which are typically different
organizations or users. This means that a dashboard can be used by multiple tenants, each with their
own data, user accounts, and settings, while still maintaining a shared infrastructure and code base.
The dashboard achieved multitenancy with the help of the Keycloak server. Users’ authentication
and authorization is done using the Keycloak server while customization of the access to different
tools is managed internally by the dashboard.

Style harmonization and Usability improvement:

The whole design is unified and improved to be more usable and harmonized, hence transmitting to
the user the feeling that is a single application providing with different tools, instead rather than of a
group of diverse tools accessible from a website.

Dashboard interfaces

All the tools with a GUI are integrated in the dashboard by means of an iframe. On the other hand,
FISHY dashboard communicates with SPI identity management for requesting token and verifying
user credentials, using a communication HTTPS.

Dashboard Sections

The FISHY dashboard is designed to show different views for the different users. It provides a way to
connect to different FISHY tool GUIs by relying on iframes. All the tool GUIs are integrated in the
dashboard using the iframe. The view for the user administrator for each one of the different use
cases is shown in the Table 2, showing different FISHY tools depending on the use case for IT-2.

Table 2. Tools in each use case for IT-2

Tool name F2F WPB SADE

IRO YES YES YES

PMEM YES NO NO

XL-SIEM NO YES YES

RAE NO YES YES

VAT YES NO NO

WAZUH YES NO NO

Trust Monitor NO NO YES

SACM YES YES YES

EDC YES YES YES

Document name: D5.2 IT-2 FISHY release integrated Page: 16 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Figure 4. FISHY Dashboard view of F2F use case

Some of the GUI’s tools integrated in the Farm to Fork (F2F) use case are shown in Figure 4. In the
same way the different use cases are able to see different views in the FISHY dashboard as defined
by their scope.

3.2 Dashboard’s Internal Architecture

In this subsection, we detail the internal architecture of the FISHY dashboard. In a high-level view,
the dashboard frontend is developed using HTML, CSS and JavaScript. The backend is built with
Node.js and Express1. To start the dashboard, you have to run the main index.js file using the node.
The dashboard is also available in the dockerized form and you can also run it with the help of
Docker. The final version of the FISHY dashboard is installed in the FISHY reference framework (FRF)
and the YAML configuration to deploy it in the FRF are also developed.

The frontend manages the login strategy with the help of the Keycloak server. The centralized
Keycloak server is used to login users with the username and password, thus avoiding the need for
the dashboard to store users and/or passwords. In this way, the dashboard doesn't have to deal with
login forms, authenticating users, and storing users.

The Express web server is used to serve the frontend on top of the Node server. This configuration of
servers’ stack has the advantage of providing a high level of scalability when having different
simultaneous connections.

In the login phase, the user provides its username and password to get access to the frontend as well
as to the different tools and services. The front-end, then, forwards this information to the Keycloak
server responsible for its verification. If the information about username and password is valid the
server returns a token to the user which will be used by the rest of the tools for the verification of
the user.

1 https://expressjs.com/

Document name: D5.2 IT-2 FISHY release integrated Page: 17 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

4 Secure Infrastructure Abstraction

This section describes the implementation details corresponding to the Secure infrastructure
Abstraction (SIA) module. The initial design of the SIA has been presented in deliverable D2.2 [1]. In
the following, we review the architectural design of this module, describing the refinements that
have been specified as a result of the research and implementation work conducted during the
iteration 2 (IT-2) of the project. Figure 5 outlines the SIA architectural design.

Figure 5. Overview of the SIA architecture

The Secure Infrastructure Abstraction (SIA) is responsible for the provisioning of a data-plane
interface to support external and inter-domain communications within the FISHY platform (e.g.,
between an IoT/edge infrastructure and a cloud infrastructure, or between multiple cloud
infrastructures). In addition, it controls the network access to the FISHY domains, protecting data
traffic entering and leaving the domains. This functionality is mainly provided by the SIA Network
Edge Device (NED) component of the SIA which is further described in section 4.3. The SIA also
includes a specific component for monitoring and telemetry information collection (SIA Monitor,
MON) associated with the NED operations. The MON component has been developed within the
framework of WP3 and is here described on section 4.4.

According to the FISHY approach, organizations are structured into different realms, based on the
cybersecurity constraints, policies or rules, and realms are divided into domains, where a domain is
defined as a group of assets with certain relationships (same network, infrastructure, location, etc.)
[1]. The SIA operates at a domain level providing the proper means to interact with the NFV
infrastructure resources that are available at every domain, regardless of the particular technologies
that are used (OpenStack [2], Kubernetes [3], etc.). This functionality is provided by the SIA

<<<<<
MANO system

E.g., OpenStack, Kubernetes, etc.

VNF

Domain

SIA Mon.
& Telemetry

SIA SBI

NFV Infrastructure

Virtual networking functionalities

Verticals, service providers, etc.FISHY EDC

SI
A

N

ED
SI

A
 M

on
.

&
 T

el
em

.
SIA
NED

SIA
SEN

SI
A

-O
F

SI
A

SE

N

SIA NBI

SIA Orchestration Function (SIA-OF)

O
th

er
 D

o
m

a
in

s

Document name: D5.2 IT-2 FISHY release integrated Page: 18 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Northbound interface (NBI) and an Orchestration Function (OF). The OF is deployed at every domain,
whereas the SIA NBI is a centralized component that can be used by other modules of the FISHY
platform, like the Enforcement and Dynamic Configuration (EDC). Both components are described in
section 4.1. To support a proper interaction with any specific management and orchestration
software stacks that exist in a domain, the SIA includes an adaptable southbound interface (SBI),
which is covered in section 4.2.

Another tool that is part of the SIA is the Centrally Controlled IPSec (CCIPS). The CCIPS goes beyond
the classical point-to-point IPsec setup and provides a centralized architectural solution to control
multiple IPsec endpoints or gateways. This solution is composed of a centralized E2E manager
(controller) and two or more agents, based on IPsec engine in IKE-less mode (no IKE protocol is
needed).

4.1 SIA Northbound interface (NBI) and Orchestration Function (OF)

The SIA NBI provides the point-of-access to interact with the NFVI resources that are available at
every domain. This point-of-access is offered to other FISHY blocks and components, such as the EDC.
To support this functionality, the SIA NBI interfaces with the Orchestration Function (OF) available at
every domain.

Conceptually, the SIA NBI can support different functionalities across domains, which involves: (1)
the management of NFV descriptors (e.g., upload/delete/update the data that describes the network
services and VNFs that are to be deployed); (2) the lifecycle management of network services and
VNFs, including Network Security Functions (NSFs) [4] as a particular case; (3) the collection of
performance information related to the execution of network service; (4) issuing notifications under
fault conditions; and (5) to provide information on the capacity of NFV infrastructure resources.

As for the design criteria agreed upon in WP5, the SIA NBI is aligned with the Application
Programming Interface (API) specification defined by ETSI for their NFV orchestrator, which is
included in ETSI NFV-SOL 005 [5]. This enables the SIA NBI to be consistent with standard
specifications. In this regard, the NFV descriptors are based on the YANG models specified in ETSI
NFV-SOL 006 [6] to ensure the interoperability and compatibility with other NFV solutions. Table 3
summarizes the formal definition of the SIA interface offered through the SIA NBI.

Focusing on the implementation aspects, and following the design criteria outlined above, the SIA
NBI is based on HAProxy [7]. HAProxy is an open-source load-balancing software commonly used in
web application architectures and content delivery networks (CDNs). It operates as a reverse proxy,
receiving requests and distributing them to different backend servers according to established load-
balancing rules. In addition to its main function as a load balancer, HAProxy also offers other useful
features, such as the ability to protect against Distributed Denial-of-Service (DDoS) attacks and
compatibility with different network protocols such as HTTP, TCP, and SSL.

On the other hand, the OF component is based on Open Source MANO, or OSM [8]. OSM is an ETSI-
hosted project that provides a Management and Orchestration (MANO) software stack aligned with
the ETSI NFV specifications. A noteworthy aspect is that OSM exposes an API based on ETSI NFV-SOL
005. Under the context of the project, this allows the SIA NBI to properly distribute the requests to
the correspondent API of each OF available at every domain, and being compliant with the standard
specification.

Document name: D5.2 IT-2 FISHY release integrated Page: 19 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Table 3. Formal definition of the SIA interface (inbound)

Component Origin Data
Type of

communication
Status

SIA

Other FISHY
modules (EDC);

NFV stakeholder,
such as 5G/6G

vertical and service
providers.

Standard data
models defined by

ETSI [5][6]

RESTful protocols
specification for the
ETSI MANO Os-Ma-

nfvo Reference Point
[5]

Implemented
through

HAProxy and
OSM

4.2 SIA Southbound interface (SBI)

As previously commented, the SIA must provide its functionalities regardless of the technologies that
are used at every domain (e.g., OpenStack or Kubernetes). To this purpose, the module includes an
adaptable southbound interface (SBI), supporting the interaction with different NFV management
and orchestration (MANO) technologies.

In this regard, the software that provides the basis for the SIA OF, ETSI OSM, already provides
support for OpenStack infrastructures, since it is an already well-established solution for NFV
technologies. In consequence, no modifications are required in those domains that implement that
virtual infrastructure management solution. However, new platforms based on container
technologies like Kubernetes (K8s) are starting to become an enticing prospect for the deployment of
VNFs in cloud and edge environments, since containers provide a light-weight solution for the
development and deployment of applications and Network Services (NS). K8s popularity can be seen
across both industry and academia due to its high adoption rate for the deployment of applications
and services.

However, OSM has limited support for the deployment of network services in K8s clusters since it
only allows the deployment of VNFs as regular K8s pods. Due to the nature of the FISHY modules and
functionalities that need to be deployed in the project, it is necessary to have a solution inside the
cluster that enables the creation and management of virtual links and networks that can securely
interconnect the VNFs of a network service, and isolate data traffic transmitted on these virtual links
and networks.

In this regard, the L2S-M K8s [9] operator provides the necessary tools to create isolated link-layer
virtual networks inside K8s clusters. Therefore, the SIA SBI in K8s clusters is implemented using a
combination of OSM and L2S-M to fully enable its proper functionality, providing the flexibility to
interact with any management and orchestration tools in a particular domain. L2S-M has been
released as an open-source project. The available documentation can be found in the project website
[10].

Currently, the deployment of NSs in K8s cluster can be performed with the combination of both L2S-
M and OSM by using Helm charts [11] that can be specified as part of NFV descriptors, which can be
deployed later in a K8s cluster with L2S-M installed (since it provides the appropriate tools to create
the necessary virtual networks to connect different VNFs). This behavior has been tested in a Proof of
Concept (PoC) [12] to leverage the potential of OSM for virtual networking in K8s environments.

With the knowledge that the PoC provided for the deployment of NSs in K8s clusters using OSM, and
thanks to the high interest from the community, a new feature has been approved to enable the
introduction of virtual networking capabilities in the OSM code [13] (i.e., provide this behavior

Document name: D5.2 IT-2 FISHY release integrated Page: 20 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

natively instead of manually configuring the virtual network charts beforehand). This feature is
currently under the design phase.

4.3 SIA Network Edge Device (NED) overlay

The SIA architecture includes the ability to create and delete virtual link-layer networks that connect
VNFs running in different domains, independently of the specific management and orchestration
software stacks employed in those domains. This way, it supports link-layer inter-domain
communications among remote VNFs. This inter-domain connectivity system is enabled by SDN
technologies and comprises two main elements: the Network Edge Device (NED) overlay network
and the Inter-Domain Connectivity Orchestrator (IDCO).

Figure 6. Overview of the NED overlay

NEDs are programmable switching functions, implemented using Open Virtual Switches (OvS) [14].
They forward traffic between domains. Each domain containing VNFs that require connectivity with
other VNFs in different domains must have at least one NED. The NEDs are connected between them
through point-to-point protected IP tunnels (e.g., IPSec VXLAN tunnels), thereby creating a NED
overlay network that interconnects all the FISHY domains. The topology of the NED overlay is
established manually in our implementation.

 The IDCO functions as an SDN controller, implemented as an internal application that runs within an
instance of the Open Network Operating System (ONOS) [15]. All the NEDs connect to the IDCO via
the OpenFlow 1.3 protocol [16]. The IDCO is accessed through the SIA NBI using a custom HTTP REST
API inspired in the ETSI GS NFV-IFA 032 ([17]) MSCS Management Interface that allows creating and
deleting inter-domain virtual networks.

Figure 6 illustrates the SIA architecture, considering a scenario where multiple domains exist, each
containing a SIA OF and a NED component. In such scenario, when two or more VNFs located in
different domains require inter-domain connectivity, each of them is connected to an access port of
its domain NED through an intra-domain NED. Simultaneously, an inter-domain virtual network
connecting those NED ports is created by communicating it to the IDCO through the SIA NBI.
Subsequently, the IDCO establishes tunnel-id-based tunnels point-to-point or multi-point virtual
circuits on top of the NED overlay, through which the inter-domain communications for those VNFs
are delivered. This is achieved using the Virtual Network Identifier (VNI) in the case of Virtual
eXtensible Local Area Network (VXLAN). In our implementation, the virtual circuits created in this
manner follow the least-cost path between domains considering the hop count as the cost metric.

NFVI

NED

Domain

NFVI

Domain

VNF

Access
ports

Verticals,
service providers, etc.

FISHY EDC

NBI

SIA-OF

SBI

Local

MANO

SIA-OF

SBI

Local

MANO

NED

SIA-OF

Dom.

NED

SIA-OF

Dom.

NED

SIA-OF

Dom.

Interdomain connectivity
orchestrator (IDCO)

VNF

Virt. networking functionalities

Access
ports

Virt. networking functionalities

NED

MON

Document name: D5.2 IT-2 FISHY release integrated Page: 21 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

4.4 SIA Monitor (MON)

The MON is a SIA component that is able to monitor different network parameters of multi-domain
NFV environments. Its design and development was originally introduced in the context of WP3, as it
focused on monitoring the integration, resource consumption, and communication of tools
developed in that work package and it is now integrated in the Fishy Reference Framework (see
section 5) within the framework of WP5 to monitor the whole platform.

The implementation of the MON component is based on Prometheus [18], an open-source
monitoring system that is primarily used for monitoring and alerting on the performance of various
systems and services. It uses a time-series database to store the collected metrics and the
Prometheus Query Language (PromQL) to retrieve and process the data. The system is capable of
retrieving metrics from a variety of sources, including applications, servers, and other devices, and it
can also trigger alerts when certain conditions are met. This makes it a powerful and flexible
monitoring system that is widely used in cloud and container environments, making it ideal for FISHY
Kubernetes-based integration.

However, in order to display all the desired metrics and dashboards and in order to make it useful to
monitor different domains, it has been necessary to include a more powerful visualization tool.

Grafana has been selected [19], as it is a powerful and popular data visualization and monitoring
platform that is fully compatible with Prometheus data sources. Grafana allows to create –and if
desired, to share– interactive and informative dashboards, alerts and notifications to monitor their
systems and services. Besides, it allows the addition of multiple data sources, making it optimum to
monitor the different domains that can make up a multi-domain NFV environment each one with
their own Prometheus deployment.

4.5 SIA Centrally Controlled IPSec (CCIPS)

As described at the beginning of section 4, the CCIPS is composed by a controller and two or more
agents, deployed where the IPsec tunnel is established. In this IKE-less case, the RFC specifies a
procedure on the re-keying process that is handled by the controller, when requested by the nodes.

On one side, the CCIPS controller architecture relies on a REST API as the central component to
provide the NBI and establish sessions with the agents using the NETCONF protocol. On the other
side, the CCIPS agents must provide an endpoint for the NETCONF protocol and manage the YANG
models. To do this, the agent uses: a) sysrepo library [20], which is a datastore used to store
configurations based on different YANG models and it provides a set of C bindings; b) Netopeer2
library [21], a NETCONF server that exposes the endpoint to manage the sysrepo datastore.

The process of configuring the IPSec tunnel starts with the controller, that gets a request (from the
OAM) and generates the necessary configuration materials that will be sent to the agents later, so
that they store the information. These requirements that arrives to the controller includes
information about IP addresses of the agents (it can distinguish between management and data
networks), the type of algorithm to be used and the lifetimes for the re-key process.

Document name: D5.2 IT-2 FISHY release integrated Page: 22 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

5 FISHY Reference Framework

The FISHY Reference Framework (FRF) is a testbed environment able to integrate and support the
execution of all the FISHY components and the possible relevant functions that are necessary for the
functionality of the FISHY project. In other words, the FRF holds the integrated status of the whole
FISHY platform, including all its components and other infrastructures (internal or external). This
testbed can be used to showcase the FISHY functionality and to implement the use cases defined for
the project.

The FRF, thanks to its flexible design, can incorporate components and infrastructures that are not
directly located in the same premises where the FRF is hosted. By using the SIA module, in charge of
the communications between FISHY components, other external infrastructures can be added into
the FRF, if there exist IP level communications with one, or several, NEDs inside the FRF.

The main architecture of the FRF can be seen in Figure 7, which depicts the main components of the
FRF and their connectivity. As it can be seen in the figure, the undelaying FRF infrastructure hosts all
the FRF components. These components are composed of Virtual Machines (VMs) managed inside an
OpenStack infrastructure. This infrastructure is in the 5TONIC laboratory premises in Madrid [22].

The FRF, following the architectural design of the FISHY project, is divided into multiple domains,
each one presented as a Kubernetes (K8s) [3] cluster (which can be composed of multiple VMs,
physical devices, etc…) or an OpenStack [2] environment. Each one of these domains host different
FISHY modules and functionalities, deployed as K8s pods (i.e., containers) or Virtual Machines
respectively. To enable the secure communications between components within a domain, each one
of them uses the SIA’s South Bound Interface to create isolated link-layer networks, used by the
modules to securely interact with the modules that need a point-to-point (or multipoint) connectivity
with other modules/functionalities. This SBI is implemented in a different way depending on the
characteristics of each domain: for OpenStack environments, Open Source MANO (OSM) [8] directly
supports this creation; for K8s platforms, it is necessary to combine the use of OSM and the L2S-M
[9] K8s operator.

Since some of the modules deployed in the FRF might be located in different domains, a NED
component is deployed per domain to oversee the secure inter-domain communication between
each component. In this regard, different NEDs are connected using IP tunneling mechanisms to
build an overlay, which follows a set topology according to the necessities of the platform/project
(using as example the overlay seen in the figure). Since each of the functions are deployed as pods
and/or VMs, each platform can enable external communications using their own networking
mechanisms (for example, services in K8s clusters). These mechanisms are reserved for specific
purposes for each module (e.g., GUI display), but data exchange between domains will always be
performed using the NED overlay.

The initial design of the FRF includes the definition of three domains hosted in the 5TONIC premises
(all deployed as K8s clusters):

• FISHY Control Services (FCS): This domain is responsible for hosting all the functionalities
related with the control and management of all the FISHY modules spread in the rest of the
FRF.

• FISHY Domain 1 & FISHY Domain 2: Provide a K8s abstraction for the deployment of FISHY
modules.

The FRF design enables the dynamic incorporation of external domains and infrastructures, thanks to
the flexibility that the overlay of NEDs provides for the communication of modules and components
in the FRF. However, since the FRF is located inside the 5TONIC premises, access from the outside is

Document name: D5.2 IT-2 FISHY release integrated Page: 23 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

limited (since it is hosted inside its private network) to preserve secure communications within the
FRF. To enable external components access, 5TONIC uses a VPN server that enables any VPN client
(with the appropriate credentials) to connect with the infrastructure. Any external domain will need
to install a VPN client with the credentials to enable this communication. Once this step is
performed, any external domain can deploy a NED in its premises and attach it to the overlay (using
an IP tunnel), effectively enabling the inter-domain communications between components. This VPN
can also be used to access the exposed services/modules from the outside (for example a GUI).

Figure 7. FISHY Reference Framework diagram

To build and update the FRF during the lifetime of the project, each partner can interact with the
corresponding domain to deploy their corresponding modules and attach them into their respective
virtual networks to enable the connectivity with the remaining FRF elements. To keep track of the
integration process of each component, the project uses Error! Reference source not found.. This
table details the main characteristics of the modules that are integrated inside the FRF, including
their location (i.e., the domain where they are being deployed), hardware requirements, components
that each module interacts with and if external connectivity is required. This information must be
filled in before the integration starts, since it is used for accommodating the resources of a domain
(increase its resources if necessary) and to establish the virtual networks that are going to be used by
each module.

Currently, there are four virtual networks defined in the FRF:

• Network net-dashboard: This network is used for communicating all the components that
need to send data to the dashboard (deployed in the FCS).

• Network net-spi: If a component needs to send/retrieve data to/from the SPI module, it will
be attached to this network.

• Network net-central-repo: Modules that write or read from the central repository module
located in the FCS domain) will use this network for their communication.

• Network ned-rabbitmq: If a module needs to pick up events from the RabbitMQ module
located in the FCS, it will be retrieved using this network.

The list of virtual networks created in the FRF along with their current IP addressing for each module
can be seen in Table 5.

Document name: D5.2 IT-2 FISHY release integrated Page: 24 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Table 4. FRF Integration status table

Table 5. Virtual networks table in FRF

Component

Network net-

dashboard

(192.168.0.0/24)

Network net-spi

(192.168.1.0/24)

Network net-central-repo

(192.168.2.0/24)

Network net-rabbitmq

(192.168.3.0/24)
…

Name of the

component

Network created to

enabling

communications

with the Dashboard

Network created to

enabling

communications with the

SPI module

Network created to

enabling communications

with the Central Repository

module

Network created to

retrieving events from the

RabbitMQ server

Information about the IP

addresses to be configured

on each component

according to the network

where it is connected (to be

completed by uc3m)

SIA-NED 192.168.0.1 192.168.1.1 192.168.2.1 192.168.3.1

SIA-NED

SIA-NED

L2S-M

L2S-M

L2S-M

SIA-OF

SIA-NBI

SIA-IDCO

SIA-MON

XL-SIEM 192.168.0.2 192.168.1.2

RAE 192.168.0.3 192.168.1.3

SPI-IDM 192.168.1.4

SPI-DM 192.168.1.5 192.168.2.5

IRO 192.168.0.6 192.168.2.6 192.168.3.6

Central

Repository
192.168.2.7 192.168.3.7

PMEM

Fishy

Dashboard
192.168.0.9 192.168.1.9

SPI-IDM 192.168.0.10 192.168.1.10 192.168.2.10

SPI-DM 192.168.1.11 192.168.2.11

192.168.0.12 192.168.1.12 192.1268.2.12

TO BE FILLED BY UC3M

Document name: D5.2 IT-2 FISHY release integrated Page: 26 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

5.1 SIA integration

In the following, we detail a list of the SIA components. For each of these components, we describe
the decisions taken regarding their integration into the FISHY FRF, along with their current
integration status (the resources allocated to each of the SIA components, in terms of virtual CPUs,
memory, and storage, which are collected in Table 4):

• SIA NED: The SIA NED component has been installed in each of the three domains of the FRF
(it will also be installed in any additional domains that might be needed, including any
external sites requiring connectivity to the FRF). Based on Open V-Switch (OVS) [14]
technology, this component has been deployed as a K8s pod in those domains that have
been instantiated as K8s clusters. Similarly, it has been deployed as a virtual machine in
OpenStack based domains. Even though only one NED is necessary on each domain to enable
inter-domain connectivity, more than one NED can be made available in a domain for the
sake of redundant and performant operation.

• SIA NBI: The deployment of the SIA NBI component has been carried out on the Kubernetes
cluster available in the FCS domain, and it is based on a Helm chart [11]. In particular, in the
open source HAProxy chart available in the Bitnami repository [23]. This chart is then
configured at deployment time with the appropriate values to serve as an access point both
to the different FISHY components, and to every function available at each domain, enabling
the management of each NFV infrastructure resources. In terms of computational resources,
since we have opted for a lightweight NBI SIA implementation, no specific values were set to
avoid allocating a greater number of resources than needed. Nevertheless, the monitoring
service offered by the MON component indicates that SIA NBI utilizes less than 1 vCPU on
average, and an instant memory does not exceed 25 MB.

• SIA OF: With respect to the SIA OF component, its deployment has been conducted at every
domain available within the FRF. As previously mentioned in section 4.1, its implementation
is based on the OSM software stack provided by ETSI. Particularly, the OF utilizes the OSM
Release THIRTEEN, and has been installed on each domain of the FRF as a virtual machine
with Linux Ubuntu 20.04.5 LTS, with 2 vCPUs of processing, 6 GB RAM, and 60 GB of storage.

• SIA SBI: As commented, the SIA SBI is based on ETSI OSM, which already provides a
comprehensive southbound interface for OpenStack based domains. To support K8s-based
domains, the SIA SBI used L2S-M. Hence, the latter has been installed as a K8s operator in
every K8s-based FISHY domain. This enables the management of virtual networks
(creation/deletion) and the attachment of FISHY components to those networks, so that they
can communicate on isolated network segments.

• SIA IDCO: The SIA IDCO component has been deployed in an independent virtual machine
that belongs to the FCS domain. It runs as a Kubernetes pod in a Kubeadm [24] 1.26 cluster in
the virtual machine. The latter has a Linux Ubuntu 20.04.3 LTS operating system, with 4 GB of
RAM, 2 virtual CPUs and 20 GB of storage. All the existing SIA NED instances communicate
with the IDCO instance.

• SIA CCIPS implementation is being done by providing to the different domains the role of
CCIPS agents. These agents will receive the information from the CCIPS controller, which
manages the secure connection by specifying some parameters, such as the type of
algorithm and the lifetimes. The CCIPS controller will be deployed on the FISHY Control
Services as a Kubernetes pod and the CCIPS agents, also in Kubernetes pod, will be on FISHY
Control Services and FISHY domains 1 and 2.

Document name: D5.2 IT-2 FISHY release integrated Page: 27 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

5.1.1 Interfaces

Although the formal definition of the SIA interface is presented in section 4.1, details on this
interface are summarized here for completeness and coherence of the document.

Table 6. SIA inbound interfaces.

Origin Data Type of communication Status

EDC

NFV data following

standard data models

defined by ETSI [5][6]

RESTful protocols specification

for the ETSI MANO Os-Ma-nfvo

Reference Point [5]

Implementation

completed using HAProxy

and OSM

NFV

stakeholder

(e.g., 5G/6G

vertical or

service

provider)

NFV data following

standard data models

defined by ETSI [5][6]

RESTful protocols specification

for the ETSI MANO Os-Ma-nfvo

Reference Point [5]

Implementation

completed using HAProxy

and OSM

Table 7. SIA outbound interfaces.

Destination Data Type of communication Status

N/A N/A N/A N/A

5.2 XL-SIEM integration

The XL-SIEM consists of two main components, the agent, and the server. The agent is installed in
each use case infrastructure to collect information.

The server is installed on the FRF and is composed of 3 modules: topology, database, and dashboard.
The topology receives information from the agent and analyzes it to create alarms. The alarms are
then stored in the database, sent to the SPI (SPI translates the alarms to CEF format and sends them
to the Central Repository) and shown in the dashboard.

In the following we describe the actions carried out to integrate the XL-SIEM into the FRF. All the
resources needed, and integration status are shown in Table 4.

• Multitenancy and SSO

To achieve multitenancy, users have been created for each use case. We have worked to incorporate
an authentication system based on Keycloak.

• Upload images and add to the repository.

As a first step, a docker image of every XL-SIEM component was built and uploaded to the machine in
the FRF. Once the docker images are in the FRF, the related information has been added to the
container registry.

• Deployment of the XL-SIEM in the Kubernetes Cluster.

The final deployment of the XL-SIEM components was completed on a Kubernetes cluster available in
the FRF domain. For that purpose, we have defined the Kubernetes deployment file for the asset. We
created a YAML configuration file that will be used to deploy it in the FRF as a Kubernetes pod.

Document name: D5.2 IT-2 FISHY release integrated Page: 28 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

In this file, the container images that we have previously uploaded are referenced, as well as the
number of replicas and environment variables and configuration options.

• Provide connectivity to the components.

Finally, we have added the needed networks to the XL-SIEM. The information about such networks
must be included in the YAML file.

5.2.1 Interfaces

Table 8. XL-SIEM inbound interfaces.

Origin Data Type of communication Status

Data

collectors

Data collected at the

data collectors

No specific one. Interfaces, use

SIA connectivity
Ongoing

Table 9. XL-SIEM outbound interfaces.

Destination Data Type of communication Status

SPI data

management

Alarms generated in

native format
AMQP Ongoing

5.3 RAE integration

Risk Assessment Engine (RAE) is a Python and R-based tool that is composed of three components:

• the Dashboard, that has the user interface communication modules and a database;

• the Engine, that has the Dexi and R model, communication modules and a database;

• the Deployment module, with the Docker configurations, that were tailored for FISHY.

Actions regarding integration into the FRF, all the resources needed, and integration status are
shown in Table 4:

• Uploading images and adding them to the repository: a docker image of the Dashboard,
Engine and Deployment modules were uploaded into the FRF domain and added to the
container registry.

• Deployment in the Kubernetes Cluster: YAML configuration file used to deploy the images in
the FRF as a Kubernetes pod.

• Providing connectivity to the components, adding networks into the YAML configuration file.

• Sending risk reports to the SPI, that translates them into the CEF format and sends them to
the Central Repository.

• Integration with Keycloak: integration with FISHY Keycloak server is in progress to allow SSO
and multitenancy for the three use cases.

5.3.1 Interfaces

Table 10. RAE inbound interfaces.

Origin Data Type of communication Status

XL-SIEM
Alarms in native

format
AMQP Ongoing

Document name: D5.2 IT-2 FISHY release integrated Page: 29 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Origin Data Type of communication Status

VAT
Reports of detected

vulnerabilities
AMQP

Not started, this integration

was decided at a later stage,

has no dependent activities

and can be done quickly.

Table 11. RAE outbound interfaces.

Destination Data Type of communication Status

SPI
Risk report in native

format
API endpoint Ongoing

5.4 SPI integration

The Security and Privacy Infrastructure (SPI) module establishes seamless communication with all
components of the FISHY Project, thereby serving as a crucial interface between low-level
constituents, higher-level modules, and users. Notably, the Identity Manager (IDM) and Data
Manager (DM) modules of the SPI have been successfully deployed in the FRF using two pods.

The IDM pod, comprising of a Keycloak instance and a PostgresSQL database, is responsible for
access control and authentication within FISHY. Any pod within one of the networks where the SPI-
IDM pod is deployed can directly send HTTP requests to Keycloak, either to request or validate an
access token.

On the other hand, the SPI-DM pod, composed of a single container featuring an HTTP Python Server,
accepts requests from tools requiring data transformation into the CEF format. Subsequently, the
Data Manager transforms the data and stores it in the Central Repository.

5.4.1 Interfaces

Table 12. SPI inbound interfaces.

Origin Data
Type of

communication
Status

FISHY appliance

Raw data from data

collectors and

processed data from

Zeek tool

HTTPS (REST API)

and/or Pub-sub,

if required

FISHY appliance under

deployment

FISHY Dashboard

and tool’s GUI

Client

credentials/Access

token

HTTPS (API)

SPI-IDM has been deployed to

the FRF. The FISHY Dashboard

and tool GUIs are currently

using Keycloak outside the

FRF, the process of integration

with the version inside the FRF

is ongoing.

Zeek
Alarms generated in

native format
HTTPS (API)

The Zeek input endpoint has

been integrated. Currently

Document name: D5.2 IT-2 FISHY release integrated Page: 30 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Origin Data
Type of

communication
Status

Zeek writes directly in the

Central Repository (the

process of sending it through

SPI data management is

ongoing)

XL-SIEM
Alarms generated in

native format
HTTPS (API)

The XL-SIEM input endpoint

has been integrated. Currently

XL-SIEM writes directly in the

Central Repository (the

process of sending it through

SPI data management is

ongoing)

RAE
Risk report in native

format
HTTPS (API)

The RAE input endpoint has

been integrated. Currently RAE

writes directly in the Central

Repository (the process of

sending it through SPI data

management is ongoing)

TIM VAT

(Including

WAZUH)

Alarms generated in

native format

HTTPS (API)

VAT and WAZUH do not

require a CEF transformation

endpoint. Currently

VAT/WAZUH writes directly in

the Central Repository (the

process of sending it through

SPI data management is

ongoing)

PMEM
Alarms generated in

native format
HTTPS (API)

The PMEM input endpoint has

been integrated. Currently

PMEM writes directly in the

Central Repository (the

process of sending it through

SPI data management is

ongoing)

Trust Monitor

Attestation reports on

enterprise

infrastructure

HTTPS (API)

The Trust Monitor input

endpoint has been integrated.

Currently Trust Monitor writes

directly in the Central

Repository (the process of

sending it through SPI data

management is ongoing)

Document name: D5.2 IT-2 FISHY release integrated Page: 31 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Table 13. SPI outbound interfaces.

Destination Data Type of communication Status

Central

Repository

Processed data in

tools own format in

CEF format Different

tool’s security events

in CEF Format

HTTPS (API)

Central repository hasn't

been deployed to the

FRF yet. However, the

DM has been deployed

with the correct pre-

configured output

5.5 IRO integration

The integration of the IRO on the FRF as a Kubernetes pod is already achieved, where IRO software
contains two containers: IRO source code and Elasticsearch. They can leverage the NED to
communicate with the container hosted on the other VM of the Sandbox. The communication
between IRO and other components such as TIM tools, Smart contracts and EDC can now be
achieved only through the Central Repository, which has been introduced to facilitate the
communication between different FISHY components. The communication with Central Repository
can be achieved either using REST HTTP APIs, for basic CRUD (Create, Read, Update, Delete)
operations, or using a publish/subscribe RabbitMQ message bus, to receive real-time updates from
TIM tools and Smart Contract. In order to manage user information and sessions, IRO can also
achieve communication with Keycloak server instance deployed inside the FRF as a pod, using REST
HTTP.

5.5.1 Interfaces

Table 14. IRO inbound interfaces.

Origin Data Type of communication Status

Central

Repository
Reports AMQP

Completed. IRO

consumes reports from

different tools.

Central

Repository
Reports REST API

Completed. IRO reads all

events stored in the

Central Repository.

Smart

Contracts

IRO receives a

verification about

reports from Smart

Contracts

AMPQ

Completed. IRO

consumes events from

Smart Contracts.

Document name: D5.2 IT-2 FISHY release integrated Page: 32 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Table 15. IRO outbound interfaces.

Destination Data Type of communication Status

Central

Repository

IRO generates policies

to be enforced by

EDC and saves them

in the Central

Repository.

REST API

Completed. The

generated policies are

automatically sent to

the Central Repository

5.6 Central Repository integration

In IT-1 the Central Repository, then known as the Threat/Attack Repository, was strictly a WP3
component and in IT-2 it was expanded to serve as a central repository and facilitate the
communication between the components (modules) of all technical WPs (WP3 – WP5). In this sense,
it was renamed to Central Repository.

The communication between modules, both internal to TIM and other platform modules, is
facilitated by an HTTP(S) REST API, that allows all CRUD (Create, Read, Update, Delete) operations
over the data entities handled by TIM; and a publish/subscribe RabbitMQ message bus, that allows
any involved components to receive real-time updates on any relevant new or updated data.

In IT-2, its data model definitions have been expanded from only dealing with events and alerts to
the ability to store various policies (high level and medium level), configuration data, and certification
data and facilitate immediate responses from the platform thanks to the pub/sub system providing
instant notifications. The Central Repository has also been modified to enable the storage of the TIM
tool reports in the CEF format.

For the purposes of integration with the FISHY Reference Framework (FRF), the networking
configuration has been expanded to use two networks, one for HTTP(S) access to Central Repository
REST API and the second one for communication with the RabbitMQ. Services that only read
notifications from the Central Repository need to connect to the RabbitMQ network only.

5.6.1 Interfaces

Table 16. Central Repository inbound interfaces.

Origin Data Type of communication Status

SPI data

management

Outcome of the TIM

and SACM tools in

CEF format and RAW

data

REST API

Currently TIM tools and

SACM write directly in

the Central Repository

(ongoing the process of

sending it through SPI

data management)

LOMOS

Processed data with

anomaly score.

LOMOS analyses the

log data and assigns it

REST API Integration in progress

Document name: D5.2 IT-2 FISHY release integrated Page: 33 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Origin Data Type of communication Status

an anomaly score.

Entries that surpass

an anomaly threshold

are stored in Central

Repository.

IRO

IRO generates

policies to be

enforced by EDC and

saves them in the

Central Repository.

REST API

Done. The generated

policies are automatically

sent to the Central

Repository

SACM Reasoning results REST API

Implementation in

progress, SACM will write

its reasoning results to

the Central Repository

EDC

Policies (at all the

abstraction levels).

Controller reads HLPs

and stores MLPs.

Enforcer reads MLPs

and stores LLCs.

ReM stores intents

and HLPs.

REST API

Only Controller reads

HLPs. The rest of the

work is ongoing, data

models on Central

Repository are completed

PMEM
Detected attack: Type

and time stamp
Pub-Sub mechanism (REST API)

Done with with Central

repository andcurrently

working on data formats

Trust Monitor

Attestation reports

on enterprise

infrastructure

Rabbit MQ/API Not started

Table 17. Central Repository outbound interfaces.

Destination Data Type of communication Status

Smart

Contracts

Receive

events/policies/alerts

from FISHY

components

AMQP

Smart Contracts receives

all relevant data for

storage on blockchain.

IRO
Reports and events

from Smart Contracts
AMQP

Done. IRO consumes

reports from different

tools and events from

Smart Contracts

Document name: D5.2 IT-2 FISHY release integrated Page: 34 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

Destination Data Type of communication Status

SPI data

management

Raw data in CEF, with

pseudoanonimization,

when required, and

processed data from

TIM tools and SACM

in CEF

REST API

Process of adding the

CEF data model to the

central repository is

ongoing. Once it’s

added, SPI-DM will post

the normalized data

EDC

Policies (at all the

abstraction levels).

Controller reads HLPs

and stores MLPs.

Enforcer reads MLPs

and stores LLCs.

ReM stores intents

and HLPs.

REST API

Only Controller reads

HLPs, data models in

Central Repository are

completed.

5.7 PMEM integration

The PMEM is an R2 based application which is used to identify the networks anomalies and attacks.
The integration of this tool in the FRF is being done by first dockerizing the R application which
contains both server and front end. The YAML configuration file is used to deploy it in the FISHY
Control Services as a Kubernetes pod. The pod is able to interact with the networks created inside
the FRF: net-dashboard, net-spi. Through these networks PMEM is able to communicate with both,
the dashboard and the Keycloak server instance deployed on the FRF as a pod.

5.7.1 Interfaces

Table 18. PMEM inbound interfaces.

Origin Data Type of communication Status

FISHY Appliance Raw data Ansible deployment Ongoing

Table 19. PMEM outbound interfaces.

Destination Data Type of communication Status

SPI data

management

Detected attack:

Type and time

stamp

Pub-Sub mechanism (REST

API)

Done with Central

repository and ongoing

the work of sending data

to SPI data management

2 https://www.r-project.org/

Document name: D5.2 IT-2 FISHY release integrated Page: 35 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

5.8 Dashboard integration

The Dashboard is a Node.js based web application which provides the SSO and multi-tenancy
mechanism for users to interact with the different FISHY tools working in the different use cases. The
users just have to login in the dashboard, and they are able to interact with the different tools based
on their scope.

The implementation of this tool has been done by first dockerizing the Node.js application. The YAML
configuration file is used to deploy it in the FRF as a Kubernetes pod. The pod is able to interact with
two networks: net-dashboard, net-spi to do the communication between different tool GUIs and
Keycloak server instance deployed inside the FRF as a pod.

5.8.1 Interfaces

Table 20. Dashboard inbound interfaces.

Origin Data Type of communication Status

SPI identity

management/access

control

Access tokens &

Verification
HTTPS (API)

SPI-IDM has been

deployed to the FRF.

The tools have

integrated their user

login mechanisms with

Keycloak

Table 21. Dashboard outbound interfaces.

Destination Data Type of communication Status

SPI identity

management/access

control

Verified user

credentials
HTTPS (API)

SPI-IDM has been

deployed to the FRF.

The tools have

integrated their user

login mechanisms with

Keycloak

5.9 SACM Integration

The SACM platform consists of a series of individual dockerized components along with a collection
of tools in a modular manner offering cybersecurity related services such as security and privacy
assurance of complex ICT systems. The platform supports the continuous assessment of the security
and privacy posture of organizations and enterprises. To do so, the platform provides the following
key capabilities among others:

• modelling and (automated) discovery of organization/enterprise IT and business assets
through its asset loader component;

• continuous multi-layer runtime monitoring of threats, vulnerabilities, incidents, and security
controls effectiveness based on Event Calculus and the EVEREST engine through its auditing
and event collection components;

Document name: D5.2 IT-2 FISHY release integrated Page: 36 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

• a front-end novel GUI that allows FISHY users to create/update assets and deploy/start its
monitoring capabilities.

All individual components of SACM have been deployed in the IRO component providing its own GUI
access to the user platform. These components are moved to the FRF as individual Kubernetes pods
while the networking configuration are expanded to facilitate HTTP(S) access to Central Repository
due to the fact that the reasoning results of SACM are stored to the Central Repository.

The pod of the SACM GUI is able to interact with the networks created inside the FRF: net-dashboard,
net-spi. Through these networks the pod of the SACM GUI is able to communicate with the
dashboard and the Keycloak server instance deployed on the FRF.

5.9.1 Interfaces

Table 22. SACM inbound interfaces.

Origin Data Type of communication Status

Smart

Contracts

Raw data from

Smart Contracts
AMQP

Started. Currently reading data from

smart contracts and performing

reasoning

FISHY

Appliance

Raw data

connected for

analysis

AMQP/ElasticSearch

Interfacing of data collectors and

agents is done in isolation,

agent integration into the Appliance is

in progress

Table 23. SACM outbound interfaces.

Destination Data Type of communication Status

FISHY

Dashboard
GUI of the SACM

SACM GUI will provide a URL

to its main dashboard for the

FISHY dashboard in terms of

interaction.

GUI in the dashboard,

has been deployed

successfully.

Smart

Contracts

Auditing Module of

the SACM sends data

to Smart Contracts

RabbitMQ Ongoing

Central

Repository

Reasoning results.

SACM can store to

the central repository

its reasoning results

REST API Ongoing

5.10 Platform Monitoring Tool

Considering all the different elements that have been developed in this project, the need to verify a
correct integration takes great precedence. The MON is a particular SIA component that allows the
monitoring of the different modules integrated in the FRF, as a multi-domain NFV ecosystem. With
this monitoring component, it is possible to verify if the different elements have been deployed
according to their specifications, if their interfaces are connected as defined and if the traffic is being

Document name: D5.2 IT-2 FISHY release integrated Page: 37 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

sent and received as desired. In addition, it can also be used to monitor the platform operation in the
different tests.

As it has been previously described, the MON uses Prometheus. The basis Prometheus has a web-
based interface for visualizing the data –accessible at http://<host_IP>:30090 although not used–,
and it can be integrated with other systems for more advanced dashboarding and alerting
functionality. In our case, Grafana has been deployed, as it enables the integration of various data
sources, making it ideal for monitoring the diverse domains comprising the FRF. With this, it becomes
possible to merge panels from components located in either FISHY Control Services (FCS) domain,
Domain 1 or 2 into a single dashboard, based on preference.

Grafana’s GUI is accessible at http://<FCS_IP>:30001 and allows to see many different dashboards
and metrics. As far as this integration goes, the focus has been placed on the main metrics to check
the functionality of the different components, creating a dedicated dashboard for each FISHY tool
deployed in the FRF. In the following figure the metrics displayed for the SPI-IDM component located
in the FCS domain can be observed.

Figure 8. Panel of the SPI-IDM tool

These metrics include the CPU Instant Usage, which shows the percentage of the number of cores
that are being used by each container. This allows to monitor the resource utilization of a pod or
container and can be used to identify performance bottlenecks, detect potential issues, or track the
overall system health. On the right, the Daily Average CPU for the past 30 days is included,
computing the average CPU utilization in the past 24 hours and extending this graph for 30 days, so
that any strange behavior can be easily detected. The Instant Memory metric represents the amount
of memory (in Megabytes) that is currently being used by a specific container. The working set is the
portion of a process's memory that is held in RAM and actively used. It includes all memory that the
kernel determines to be in use, including memory that is used by the kernel, by the container itself,
or by any processes running inside the container.

In the same way as before, the daily average is computed and graphed for the past 30 days, to be
able to detect anomalies. Finally, the transmission/reception Throughput or rate is displayed (in
Kbits/s). We show this metric for the whole pod and for each network interface allocated to the pod.
It is important to note that this metric will be specific to the pod’s network namespace, meaning that
it will only show the network traffic that is happening inside the pod and not the node of the
Kubernetes cluster where the pod runs.

In particular, in the dashboard shown as an example in “Figure 8. Panel of the SPI-IDM tool”, the
performance of SPI Identity Manager is depicted both in instant values and average measures. A
small percentage of CPU usage is appreciated due to the recent inclusion of the component in the
domain, which means that it is already integrated but still not executing any demanding task. The
same occurs with instant memory which suffers small oscillations but still requires little resources.

Document name: D5.2 IT-2 FISHY release integrated Page: 38 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

However, the average memory can be seen to grow as time passes, although it is still a small value,
which is the expected behaviour as the pod begins to perform new tasks. Finally, the throughput is
seen to be quite low as the pod is not exchanging much traffic with other pods yet. Once all the
components are integrated and interconnected, this would be reflected in the different panels of the
MON, that would allow to verify the proper final integration, as well as to monitor the performance
metrics of the FISHY components during the functional tests that will validate their proper behaviour.

5.11 Smart Contracts

The Smart Contracts component is a validation mechanism for the different events/policies/reports
that the rest of the FISHY components produce. The validation process involves the persistence of,
for example, a report’s details, that arrives from the Central Repository, in an IPFS node and the
information to retrieve it from IPFS in a private Quorum network. The use of these two components
ensures that any attempt to tamper with the data cannot go undetected.

The Smart Contract component is a Django application, always monitoring the RabbitMQ of the
FISHY Central Repository for any new events/policies/reports that are written. The component, as
well as the IPFS and the Quorum network, are available in a dockerized format and is integrated in
the FRF as Kubernetes pods. The Smart Contracts component is connected to the RabbitMQ network,
to read the Central Repository notifications and send back an answer to confirm the validation. An
additional network to host IPFS and Quorum has been created and connected to the component.

5.11.1 Interfaces

Table 24. Smart Contracts inbound interfaces.

Origin Data Type of communication Status

Central

Repository

Notification of reports, events, policies

of FISHY Components
AMQP Completed

Table 25. Smart Contracts outnound interfaces.

Destination Data Type of communication Status

IPFS
The details from the notifications of

the Central Repository
HTTP Completed

Quorum

Network

The details of the stored

notification to retrieve from IPFS
HTTP Completed

Central

Repository
Smart Contract validation answer AMQP Completed

Document name: D5.2 IT-2 FISHY release integrated Page: 39 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

6 Conclusions

The work done in WP5 and related WPs is summarized in this deliverable. All the tools that are part
of the FISHY Reference Framework have been explained -in terms of deployment-. Also, latest
updates on the Dashboard, IRO and SIA have been reported on this document.

This deliverable closes the WP5, where all the tools involved in the project have been integrated in a
common framework. The FISHY Reference Framework is the stable platform created to provide the
necessary connections for the tools to interact and communicate between them.

Document name: D5.2 IT-2 FISHY release integrated Page: 40 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

References

[1] Admela Jukan et al., FISHY Deliverable D2.2: IT-1 architectural requirements and design, H2020
FISHY project (Grant agreement ID: 952644), August 2021.

[2] OpenStack, Open source software for creating private and public clouds, [Online]. Available:
https://www.openstack.org (accessed on March 24, 2023).

[3] Linux Foundation, Kubernetes - A production-grade container orchestration stack, [Online].
Available: https://kubernetes.io (accessed on March 24, 2023).

[4] S. Hares, D. Lopez, M. Zarny, C. Jacquenet, R. Kumar, J. Jeong, “Interface to Network Security
Functions (I2NSF): Problem Statement and Use Cases,” RFC 8192, Jul. 2017. [Online] Available:
https://datatracker.ietf.org/doc/html/rfc8192 (accessed on March 28, 2023)

[5] ETSI GS NFV-SOL 005 V4.3.1, “Network Functions Virtualisation (NFV) Release 4; Protocols and
Data Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point,” European
Telecommunications Standards Institute, ETSI, 2022.

[6] ETSI GS NFV-SOL 006 V3.7.1, “Network Functions Virtualisation (NFV) Release 3; Protocols and
Data Models; NFV descriptors based on YANG Specification,” European Telecommunications
Standards Institute, ETSI, 2023.

[7] HAProxy, An open source software implementation of a high availability load balancer and
reverse proxy for TCP and HTTP-based applications, [Online]. Available:
https://www.haproxy.com (accessed on March 24, 2023).

[8] ETSI, Open Source MANO (OSM) - An open source NFV Management and Orchestration (MANO)
software stack aligned with ETSI NFV specificactions, [Online]. Available: https://osm.etsi.org
(accessed on March 24, 2023).

[9] L. F. Gonzalez, I. Vidal, F. Valera and D. R. Lopez, "Link Layer Connectivity as a Service for Ad-Hoc
Microservice Platforms," in IEEE Network, vol. 36, no. 1, pp. 10-17, January/February 2022, doi:
10.1109/MNET.001.2100363.

[10] Universidad Carlos III de Madrid. L2S-M. Available at: http://l2sm.io (accessed on March 27,
2023).

[11] Linux Foundation, Helm – The package manager for Kubernetes, [Online]. Available:
https://helm.sh (accessed on March 24, 2023).

[12] Luis F. Gonzalez, B. Nogales, I. Vidal and F. Valera. OSM PoC 14: Leveraging OSM virtual
networking in Kubernetes clusters. Available at:
https://osm.etsi.org/wikipub/index.php/OSM_PoC_14_Leveraging_OSM_virtual_networking_in_

Kubernetes_clusters (accessed on March 28, 2023).

[13] Luis F. Gonzalez, I. Vidal, F. Valera, B. Nogales and Diego R. Lopez. Connectivity among CNFs
using SDN. Available at: https://osm.etsi.org/gitlab/osm/features/-/issues/10921 (accessed on
March 28, 2023).

[14] Open vSwitch. (v3.1.0), Linux Foundation. Accessed: March 24, 2023. [Online]. Available:
https://www.openvswitch.org/

[15] Open Network Operating System. (2.7.0), Open Networking Foundation. Accessed: March 24,
2023. [Online]. Available: https://opennetworking.org/onos/

https://kubernetes.io/
https://datatracker.ietf.org/doc/html/rfc8192
http://l2sm.io/
https://helm.sh/
https://osm.etsi.org/wikipub/index.php/OSM_PoC_14_Leveraging_OSM_virtual_networking_in_Kubernetes_clusters
https://osm.etsi.org/wikipub/index.php/OSM_PoC_14_Leveraging_OSM_virtual_networking_in_Kubernetes_clusters
https://osm.etsi.org/gitlab/osm/features/-/issues/10921
https://www.openvswitch.org/
https://opennetworking.org/onos/

Document name: D5.2 IT-2 FISHY release integrated Page: 41 of 41

Reference: D5.2 Dissemination: PU Version: 1.0 Status: Final

[16] Openflow® Switch Specification 1.3.0, ONF TS-006, June. 2012.

[17] Network Functions Virtualization (NFV) Release 3; Management and Orchestration; Interface
and Information Model Specification for Multi-Site Connectivity Services, ETSI GS NFV-IFA 032
v3.2.1, ETSI, France, April. 2019

[18] Prometheus Official Documentation, [Online]. Available: https://prometheus.io/docs/ (accessed
on March 28, 2023).

[19] Grafana Official Documentation, [Online]. Available: https://grafana.com/docs/grafana/ (accessed
on March 28, 2023).

[20] Sysrepo. Storing and managing YANG-based configurations for UNIX/Linux applications.
Available: https://www.sysrepo.org/

[21] Netopeer2 – NETCONF Server. Available: https://github.com/CESNET/netopeer2

[22] 5TONIC - An open research and innovation laboratory focusing on 5G technologies, [Online].
Available: https://www.5tonic.org/ (accessed on March 28, 2023).

[23] VMware, Bitnami - A Kubernetes applications catalog, [Online]. Available:
https://bitnami.com/stacks/helm (accessed on March 24, 2023).

[24] Kubeadm. Available: https://kubernetes.io/docs/reference/setup-tools/kubeadm/

https://prometheus.io/docs/
https://grafana.com/docs/grafana/
https://www.sysrepo.org/
https://github.com/CESNET/netopeer2
https://www.5tonic.org/
https://bitnami.com/stacks/helm
https://kubernetes.io/docs/reference/setup-tools/kubeadm/

