
Security in DevSecOps: Applying Tools and Machine
Learning to Verification and Monitoring Steps

Matija Cankar
matija.cankar@xlab.si

XLAB d.o.o.
Ljubljana, Slovenia

Nenad Petrović
nenad.petrovic@xlab.si

XLAB d.o.o.
Ljubljana, Slovenia
University of Niš

Niš, Serbia

Joao Pita Costa
Aleš Černivec
Jan Antić

Tomaž Martinčič
Dejan Štepec
XLAB d.o.o.

Ljubljana, Slovenia

ABSTRACT
Security represents one of the crucial concerns when it comes to De-
vOps methodology-empowered software development and service
delivery process. Considering the adoption of Infrastructure as Code
(IaC), even minor flaws could potentially cause fatal consequences,
especially in sensitive domains such as healthcare and maritime
applications. However, most of the existing solutions tackle either
Static Application Security Testing (SAST) or run-time behavior
analysis distinctly. In this paper, we propose a) IaC Scan Runner, an
open-source solution developed in Python for inspecting a variety
of state-of-the-art IaC languages in application design time and b)
the run time anomaly detection tool called LOMOS. Both tools work
in synergy and provide a valuable contribution to a DevSecOps tool
set. The proposed approach is demonstrated and their results will be
demonstrated on various case studies showcasing the capabilities
of static analysis tool IaC Scan Runner combined with LOMOS –
log analysis artificial intelligence-enabled framework.

CCS CONCEPTS
• Security and privacy → Software security engineering.

KEYWORDS
DevOps, DevSecOps, IaC, SAST, DAST, Machine Learning, Natural
Language Processing, Self-supervised Learning
ACM Reference Format:
Matija Cankar, Nenad Petrović, Joao Pita Costa, Aleš Černivec, Jan Antić,
Tomaž Martinčič, and Dejan Štepec. 2023. Security in DevSecOps: Apply-
ing Tools and Machine Learning to Verification and Monitoring Steps. In
Companion of the 2023 ACM/SPEC International Conference on Performance
Engineering (ICPE ’23 Companion), April 15–19, 2023, Coimbra, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3578245.3584943

1 INTRODUCTION
DevOps methodology in the area of software engineering targets
to enable the automatization of operations related to development,
testing, continuous integration and deployment in alignment with

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0072-9/23/04.
https://doi.org/10.1145/3578245.3584943

business goals and other aims of the involved stakeholders and or-
ganizations [2], [1]. In this context, many novel methods, concepts
and techniques have emerged, striving to aid the automation of the
underlying activities. One of corner stones is the introduction of In-
frastructure as Code (IaC) [1] that treats deployment, configuration
and update instructions similarly as software source code. For that
purpose, usually, both human- and machine-readable scripts are
leveraged in order to automatize the underlying operations, while
eliminating the need of manual intervention as much as possible.
This way, high degree of deployment repeatability and reusabil-
ity is achieved, saving both the time and reducing the operational
costs for the involved parties [1]. Additionally, modifications of
IaC scripts for the purpose of application updates during the lifecy-
cle is process prone to various errors and mistakes, e.g., exposing
credentials, applying wrong/outdated settings or configuration pa-
rameters.

Preventing theworst consequences by performing IaC inspection
with Static Application Security Testing (SAST) tools covers only
a subset of potential issues in design-time. Others can be detected
only when applications is already deployed, running in production
environment and facing the load of users and potential attacks. In
this application life-cycle stage we can apply Dynamic Application
Security Testing (DAST) tools or monitoring the application to
detect abnormalities as soon as possible [2].

The paper proposes a proof-of-concept of tools contributing to
SAST and complement the DAST approach in the DevSecOps wokr-
flow. First we improved the DevSecOps design-time experience
by developing a Python-based tool called IaC Scan Runner [11]
in order to integrate a variety of static component and security
inspection check tools targeting state-of-art IaC languages. In our
case, the focus is on Ansible playbook-related case study includ-
ing sophisticated component and security checks. On the other
side, the dynamic/run-time aspects are covered by the proposed
approach. For run-time phase we developed a VAT and AI-enabled
log inspection tool called LOMOS. The paper is concluded by listing
the domains where tools are applied and pointing out the future
work.

2 BACKGROUND AND RELATEDWORK
2.1 DevSecOps workflow
Life-cycle management of the application from the configuration
and deployment phase to the daily repetitive updates and upgrades
has been recognised as a Dev(Sec)Ops workflow [2] containing

201

https://orcid.org/0000-0002-5805-0217
https://orcid.org/0000-0003-2264-7369
https://orcid.org/0000-0001-5745-1302
https://orcid.org/0000-0003-0011-8482
https://orcid.org/0000-0003-3266-7064
https://orcid.org/0000-0001-6069-8373
https://orcid.org/0000-0002-3051-7030
https://doi.org/10.1145/3578245.3584943
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3578245.3584943
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578245.3584943&domain=pdf&date_stamp=2023-04-15


ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Matija Cankar et al.

multiple stages where different roles of experts and technicians
need to collaborate. The stages can be divided in design phase –
including Plan, Create, Verify and Package – and run-time phase
– including Release, Configure and Monitor. Phases are meant to
be repetitive and focused on special tasks. Considering the possi-
bility of security and other issues in design phase, verification of
IaC script trustworthiness is applied as a measure to tackle them.
On the other side, in run-time phase, monitoring of real-time be-
havior of a system is performed in order to detected deviations
from normal operation. In this paper, our focus is on two phases
aiming to ensure trustworthiness of the application by improving:
a) static verification and security analysis before the deployment in
design phase and b) adoption of machine learning-based approach to
anomalies detection within logs in run-time, on the other side.

2.2 Security in design phase of DevSecOps
Before the deployment, still in the design phase of the applica-
tion, the verification stage checks consistency and inspects for
vulnerabilities by applying SAST tools. Our goal is to detect known
vulnerabilities, often caused by improper configuration, parame-
ter values, type errors and non-compliance with common good
practices and particular specification language standards. However,
it is quite often the case that IaC-based deployment depends on
multiple components, provided by either community or specific
organizations that work on IaC languages and standards. Therefore,
it is also highly relevant to take into account the previously men-
tioned concerns and apply them to IaC-related libraries, templates
and collections (as for Ansible). For that reason, additional steps
are be performed such as verification of dependencies or usage of
outdated, vulnerable libraries, which is referred to as component
inspection within the scope of this paper. The component inspec-
tion can find new vulnerabilities even if the IaC has not changed,
therefore this task is continuously repeated also after the applica-
tion is running. The available of-the-shelf solutions – also called
checks – can base on the expert knowledge integrated in the tool
[6] or rely on machine learning approaches [4].

Some of the notable existing SAST solutions considering com-
ponent and security inspection are the following: Mega-Linter1
- open-Source, offers quality and consistency analysis checks for
wide set of languages covered, outputs detailed reports and support
auto-fixing; Super-linter2 - GitHub-integrated workflow that rep-
resents a combination of multiple linter tools; Snyk3 - continuous
component checking of dependencies covering project build tools
such as Maven for Java and npm for Node.js. Moreover, Open Web
Application Security Project (OWASP)4 holds an extensive list of
open source and commercial SAST tools.

The service we are proposing combines code scans and also com-
ponent inspections, which means that also holds the knowledge of
potential issues that canmaterialise when a specific component is in
use. Beside existing scans we focused on implementing component
scans which has not been yet covered by the community.

1https://megalinter.io/latest/, accessed on 18 January 2023
2https://github.com/github/super-linter, accessed on 18 January 2023
3https://snyk.io/, accessed on 18 January 2023
4https://owasp.org/www-community/Source_Code_Analysis_Tools/, (January 2023)

2.3 Security in run-time phase of DevSecOps
Once the deployment defined by IaC scripts is done, applications
and services go live. While they are up and running, during their
usage life-cycle phase, various events (such as malicious behavior,
attacks and anomalies) can occur and have impact on many aspects
related to their availability, performance, data safety and overall
integrity [2]. A set of methods aiming to detect such occasions is
referred to as Dynamic Application Security Testing (DAST).

For this purpose, the monitoring components record various
messages, errors and info about the state changes, generating logs
as output. Usually, log analysis methods are applied in order to
discover events, which could affect the system, such as security
treats or failures. In order to achieve this goal, various tools and ap-
proaches are used, as some of significant examples are: WALASAM
[8] - web server log analysis using data mining methods based
on classification and clustering; nfer [9] - rule-based event-stream
abstraction and processing; CMS-NLP [10] - NLP-based technique
for log analysis aiming to reduce the operational workload and
delays within a CMS solution. Other prominent methodologies in
the state-of-the-art of anomaly detection on logs use BERT-based
pre-trained methods [3] and the Masked Language Model (MLM)
in combination with BERT[12], as well as deep learning based on
auto-encoder networks [5].

Our approach leveraged an existing machine learning approach,
complementing a traditional DAST methodology, to log monitoring
relying on deep learning techniques designed for Natural Language
Processing (NLP), which has been already approved by enabling
robust distinction between normal system operation and abnormal-
ities [10].

3 APPROACH
In this paper, we adopt an approach which tackles the previously
mentioned issues related to security and trustworthiness within the
scope of DevOps workflows in both the design and run-time phase,
based on DevSecOps philosophy [2]. In the design phase, we rely on
(i) a service for static code scanning, integrating many independent
tools and in run-time phase, we developed (ii) an NLP-based service
for detecting anomalies and therefore potential issues in system
logs as presented in Section 2.3. Both services are applicable on
wide set of IaC related formats and standard and provide a summary
of the scans to the final user.

Figure 1 depicts the proposed DevSecOps workflow based cov-
ering the aspects of both design and run-time trustworthiness,
leveraging the proposed (i) and (ii) approaches in synergy with
other DevSecOps steps. In the first step, when user has already
designed an application, she provides the desired archive contain-
ing IaC scripts and submit it for static scanning. Here, user is able
to notice if issues exist, and correct the code, accordingly. After
user intervention and code correction, the IaC archive is checked
once again and deployed in case that no problems were detected.
After the successful deployment, when the infrastructure is up and
running the services, the infrastructure or application logs are ac-
quired. These logs unveil a lot of potential security issues that is
known described by experts. To identify unknown problems and
to label potential issues, an additional AI-based analysis service is
processing the logs and detecting anomalies, ranking them with

202



Security in DevSecOps: Applying Tools and Machine
Learning to Verification and Monitoring Steps ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

an evaluation score, so users can focus only on the parts of history
logs that potentially present a threat.

Figure 1: Workflow enabling design and run-time trustwor-
thiness in DevSecOps: 1 – upload IaC; 2 – archive scan 3 - list
of compatible check tools 4 – generate HTML summary and
persist results 5- correcting with respect to reported prob-
lems 6 – IaC deployment 7– run-time events and logging 8 –
log analysis 9 – event detection and alerts

4 THE SERVICES OF INSPECTION
We developed a design-time and run-time services for security
inspection. A design-time can do a multi-pass over IaC by initiating
known open-source and proprietary IaC scan tools together with
our own implemented inspection services for deep component
check of Ansible IaC. The design service resulted in two parts,
IaC Inspector and IaC Component inspector that we combined in
the Restful Service. For the run-time services an AI powered log
inspection tool, called LOMOS, is developed.

4.1 Design-time IaC and component inspection
The design-time service we developed works as presented in Figure
1 and covers steps 1-6 as mentioned in previous sections. The user
provides the IaC archive that is about to be scanned by the IaC
Inspector. The IaC Scan runner analyzes the user selected checks
together with the archive and automatically recognize the com-
patible checks to performed. In this step our crucial contribution
is the development of the Ansible component inspector. Our gap
analysis revealed that in case of Ansible, IaC code relies on multiple
Ansible Collections that provide specific functionality. However,
inclusion of each collection presents new potential risks, as collec-
tions could be outdated and/or vulnerable. This led us to develop
a tool with the following set of features: 1) parameter checking -
wrong configuration identification, making sure that the correct
parameters are used, considering their relationships 2) best prac-
tices adoption - ensures that anti-patterns are avoided 3) module
checking - identifies name changes and redirects, checks for fully
qualified names, and ensure we are using only certified and ap-
proved modules 4) correction recommendations - error assistant
will guide us through the hard-to-catch errors, while errors and
warnings can be distinguished by colors.

This framework combining IaC and component check is imple-
mented in Python programming language and offers both web-
based REST interface relying on FastAPI and command-line in-
terface (CLI) for easier integration with DevOps pipelines. The
OpenAPI specification5 can be used with SwaggerUI graphical in-
terface to interact with deployed service. A variety of check tools
is covered - from basic linters (pylint – for Pythom, YAMLlint –
for TOSCA and Ansible YAML files, Hadolint – for Docker files) to
more sophisticated security-related tools (such as Terrascan and
tfsec for Terraform; Steampunk Spotter for Ansible; xOpera TOSCA
parser for TOSCA YAML). Apart from that, informational tools that
provide IaC archive-related statistics are included as well, such as
cloc. The list of currently supported static analysis tools for specific
IaC-related file types can be found here6.

We named the presented service as IaC Scan Runner [11]. It is
an open-source software, publicly available on GitHub7, with a
goal to aggregate various types of IaC-related static script scanning
tools put together into unified web-based API. To ease the usage
the component inspection tool is integrated in the IaC Scan Runner
and can be initiated among other supported scans. The professional
version of component inspection tool is available also separately
under the commercial name Steampunk Spotter8. Beside the static
IaC analysis provides an assisted automation code writing and
offers recommendations for Ansible Playbooks. Tool can be simply
integrated within GitHub CI/CD workflows using command-line
interface.

4.2 Design-time IaC Scan results
When the IaC is processed by all scans the outputs are ranked and
displayed to a user. The output lists result summary in four levels:
1) Passed – the IaC is clear with no problems, 2) Error – issues
found 3) Warnings and 4) Not performed – scan not performed as
there was no associated file. To ease the managing all scan results
for the user, the ranks define prioritisation list, displaying checks
with more serious issues on top and less important issues later.

The list of the scans is limited to the ones that current version
of IaC Scan Runner supports, however, we are aware that DevOps
paradigm is evolving and new scans will appear in the future, to
cover new vulnerabilities. To make the tool more future-proof, we
prepared the instructions on our GitHub location9 that can be used
to add any new scan in the IaC Scan Runner.

4.3 Run-time service inspection
The run-time inspection is focused on vulnerability assessment
tools, including the continuous checking of the system safety and
system information management systems that check system his-
toric logs. In the following sections we will present the VAT and
LOMOS approach.

4.3.1 VAT - static vulnerability assessment from rule matching. In
complex systems, verification is not only a matter concerning the

5https://xlab-si.github.io/iac-scanner-docs/
6https://xlab-si.github.io/iac-scanner-docs/02-runner.html
7https://github.com/xlab-si/iac-scan-runner, accessed on 13 January 2023
8https://steampunk.si/blog/how-to-use-steampunk-spotter-cli-to-audit-your-
playbook/, accessed on 13 January 2023
9https://github.com/xlab-si/iac-scan-runner#readme, accessed on 20 January 2023

203



ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal Matija Cankar et al.

pre-operation steps, but it also encompasses the operation of the
system. In particular, it is of paramount importance to make sure
that a system undergoes through a continuous run-time verification
for what concerns any security violation. Such violations can be
recognized by monitoring of various security metrics (e.g., file in-
tegrity, network configuration changes, usage of software reported
as vulnerable, malware detection) and integrated with the system’s
monitoring component to recognize violations of defined secu-
rity policies and alert DevSecOps teams to address and eliminate
threats as fast as possible. Through security verification and threat
detection on multiple levels, the PIACERE framework empowers
deployed applications by helping to prevent abuse and leakage of
data.

We have developed a toolset able to verify any security violation
at run-time, feeding self-learning and self-healing mechanisms. The
monitoring system is capable of detecting security-related events
and incidents in the deployed application’s environment10. It is
(to the extent possible) deployable automatically and notifies users
about security alerts. The system is then able to automatically
deploy security monitoring agents, integrated into the monitoring
mechanisms and notify about security threats according to the
policies.

4.3.2 LOMOS - dynamic security with AI-powered log analysis. To
complement and enhance the static analysis with VAT as discussed
above in Section 4.3.1, we have developed a log analysis tool -
LOMOS - that provides the automatic analyses of system or appli-
cation logs and provides valuable insights regarding the current
and past status of the monitored assets. It is based on LogBERT
[7] and implements self-supervised NLP methods, such as Masked
Language Modelling, relying on deep learning techniques and tak-
ing into account various aspects relevant to logs, such as seman-
tics of their messages and sequential information. The adopted
AI-based approach is able to perform automatic message analysis
based on historical log records, taking into account factors, such
as their severity and occurrence frequency. It allows for unsuper-
vised distinction between the normal flow and abnormalities, while
corresponding notification are sent to the user when unexpected
behavior or incident happens (see the workflow in Figure 2).

Figure 2: Workflow of log anomaly detection with LOMOS

Traditional log monitoring solutions, such as the one discussed
in Section 4.3.1, are limited to rule-based (manual) analysis of time
10https://medina-project.eu/blog/tools-and-techniques-collecting-evidence-
technical-and-organisational-measures, accessed on 20 January 2023

series data. In contrast, LOMOS makes use of state-of-the-art NLP
methods in order to model log streams and capture their normal
operating conditions. This enables the implementation of a moni-
toring system that does not depend on any manually defined rules
or human intervention, but rather on behavioral model which is
able to detect deviations that would represent any kind of abnor-
mal situations, including potential security threats. The following
relevant use cases are covered: (i) the insightful monitoring of ap-
plication logs; (ii) the automatized alert system for any deviation
from normal execution workflows; (iii) the easy root cause analysis
via integration of logs from several components; and (iv) the identi-
fication of specific events, such as security incidents, performance
drop and system failures. Additionally, LOMOS can be integrated
with other systems as Grafana UX interface, Slack alerting system,
Security information and event management system (SIEM) and
extended and detection response tools (XDR).

5 USE-CASES AND APPLICATIONS

Table 1: Fields of security service application, IaC Scan Run-
ner (IaC and Component check), VAT and LOMOS

Ia
C
ch
ec
k

Ia
C

Co
m
po

ne
nt

ch
ec
k VA
T

LO
M
O
S

Public administration ✓ ✓ ✓
Transport infra ✓ ✓

Critical infrastructure ✓ ✓
Supply-chain Security ✓ ✓

Connected Cars ✓ ✓
Smart Agriculture ✓ ✓
Health Devices ✓

The presented services have been already applied on the domains
where users are evaluating them. The overall mapping between the
domains of interest and presented tools is shown in Table 1. The Iac
Scan Runner is currently evaluated by the Slovenian Public Admin-
istration Ministry that will use the tool to inspect their production
services deployed on the state-internal network in the sense of IaC
security and component – Ansible collection – verification. In the
area of telecommunication infrastructure, the Ericsson will evalu-
ate the usage of the IaC Scan Runner on the IaC code for network
configuration and deploying edge applications. The Prodevelop,
a maritime critical infrastructure manager, will evaluate the IaC
Scan Runner for IaC supporting the migration of their application
from private to the public cloud. All three mentioned domains are
using the SAST tools through the PIACERE IDE developed over the
Eclipse IDE framework. Our Ansible component check tool called
Steampunk Spotter, which is included in IaC Scan Runner scan set,
is also available as a commercial software for DevOps developers11.
The overall chain of tools used for implementation of our approach
is depicted in Figure 3.

On the one side, the VAT and LOMOS applications are in the eval-
uation in food chain producers, connected car producers and smart
11https://steampunk.si/spotter/

204



Security in DevSecOps: Applying Tools and Machine
Learning to Verification and Monitoring Steps ICPE ’23 Companion, April 15–19, 2023, Coimbra, Portugal

Figure 3: DevSecOps toolchain behind our approach: green -
design-time, violet - deployment, blue - events, red - run-time

factory delivery chains – we address these fields with a common
name Supply-chain security – where users use them for incident
detection and prediction, as well as failure detection and prediction
or root cause analysis, benefiting the efficiency of operations and
reduced response times, while optimizing the usage of resources
12. On the other side we are also using this secure approach in
the context critical infrastructure as railway infrastructure man-
agement and energy provision to build the security Layer into the
novel ICOS13 platform, capturing and optimizing log streams, with
integrated alerting capabilities. The LOMOS will be also applied
in new initiatives in context of energy consumption prediction in
case of extraordinary events, like pandemics, where historical daily,
weekly and monthly cycles cannot be used as a reference. This topic
is yet to be investigated in SUNRISE14 project. In the future we also
plan to evaluate LOMOS in health domain, where IT infrastructure
is comprised of a large number of IoT devices that gather sensitive
data. This is a topic of CYLCOMED project15.

Finally, presented tools are not used only by the technicians
that applying security measures to the applications but also by
the auditors and standardisation bodies to evaluate the application
compliance to the standard. This complex and though task is the
goal of MEDINA16 project, which uses presented VAT tools as an
automated compliance check that eases the auditors work.

6 CONCLUSION AND FUTUREWORK
This paper has shown how it is possible to cover both the design
and run-time aspects of trustworthiness within DevOps workflows,
relying on integration of various tools for static code analysis and
anomaly detection, on the other side. For static analysis, we focus
on the Ansible case study, leveraging the capabilities of automatic
code correction when issues were detected. When it comes to run-
time analysis, we see the value of the complementarity of a static
approach, based on rule matching using deployed agents, and a
dynamic approach based on machine learning methods on text.

12https://fishy-project.eu/blog/importance-early-detection-vulnerabilities-and-
attacks-healthy-supply-chain
13https://www.icos-project.eu/
14https://sunrise-europe.eu/
15https://www.cylcomed.eu/
16https://medina-project.eu/

Regarding the SAST-related future works, we will be working an
automated procedure which enables to extend the existing design-
time analysis tool with new IaC checks, which is highly beneficial
when it comes to saving time and effort. We are also further de-
veloping our DAST approach, VAT, in relation to a Wazuh-based
SIEM in the context of the management of trustworthy evidence
on various levels, ensuring the trustworthiness of evidence across
the lifecycle17. The run-time security approach discussed in this
paper is also being applied and further developed in the context of
cybersecurity of supply chains and failure detection and prediction
as discussed in Section 5. Finally, it is planned to incorporate the
proposed approach in context of platform engineering18 - a novel
paradigm fusing software development, security and operations,
promoting collaboration aided by shared platforms that provide
self-service capabilities and automated infrastructure management.

7 ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 and Horizon EU research and innovation programmes
under Grant Agreements No. 101000162 (PIACERE), 952644 (FISHY),
952633 (MEDINA), 101070177 (ICOS), 101073821 (SUNRISE) and
101095542 (CYLCOMED)

REFERENCES
[1] Juncal Alonso, Christophe Joubert, Leire Orue-Echevarria, Matteo Pradella, and

Daniel Vladušic. 2021. Programming trustworthy Infrastructure As Code in a
Secure Framework. In First SWForum workshop on Trustworthy Software and Open
Source 2021. 1–8.

[2] Juncal Alonso, Radosław Piliszek, and Matija Cankar. 2023. Embracing IaC
Through the DevSecOps Philosophy: Concepts, Challenges, and a Reference
Framework. IEEE Software 40, 1 (2023), 56–62. https://doi.org/10.1109/MS.2022.
3212194

[3] Song Chen and Hai Liao. 2022. BERT-Log: Anomaly Detection for System Logs
Based on Pre-trained Language Model. Applied Artificial Intelligence 36, 1 (2022),
2145642.

[4] Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik, and
Andrea De Lucia. 2018. Detecting code smells using machine learning techniques:
Are we there yet?. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 612–621. https://doi.org/10.1109/SANER.
2018.8330266

[5] Amir FarzadT and Aaron Gulliver. 2020. Unsupervised log message anomaly
detection. ICT Express 6, 3 (2020), 229–237.

[6] Kerim Goztepe. 2012. Designing Fuzzy Rule Based Expert System for Cyber
Security. International Journal of Information Security Science 1 (01 2012), 13–19.

[7] Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. LogBERT: Log Anomaly
Detection via BERT. https://doi.org/10.48550/ARXIV.2103.04475

[8] Jingquan Jin and Xin Lin. 2022. Web Log Analysis and Security Assessment
Method Based on Data Mining. Computational Intelligence and Neuroscience 2022
(08 2022), 1–9. https://doi.org/10.1155/2022/8485014

[9] Sean Kauffman. 2022. Log Analysis and System Monitoring with nfer. Science
of Computer Programming 225 (11 2022), 102909. https://doi.org/10.1016/j.scico.
2022.102909

[10] Lukas Layer, Daniel Abercrombie, Hamed Bakhshiansohi, Jennifer Adelman-
McCarthy, Sharad Agarwal, Andres Hernandez, Weinan Si, and Jean-Roch Vli-
mant. 2020. Automatic log analysis with NLP for the CMS workflow handling.
EPJ Web of Conferences 245 (01 2020), 03006. https://doi.org/10.1051/epjconf/
202024503006

[11] Nenad Petrovic, Matija Cankar, and Anže Luzar. 2022. Automated Approach to
IaC Code Inspection Using Python-Based DevSecOps Tool. 1–4. https://doi.org/
10.1109/TELFOR56187.2022.9983681

[12] Jina Kim Yukyung Lee and Pilsung Kang. 2021. LAnoBERT: System Log Anomaly
Detection based on BERT Masked Language Model. arXiv preprint 211109564
(2021).

17https://medina-project.eu/blog/tools-and-techniques-collecting-evidence-
technical-and-organisational-measures, accessed on 20 January 2023
18https://www.honeycomb.io/blog/future-ops-platform-engineering, accessed on 20
January 2023

205

https://doi.org/10.1109/MS.2022.3212194
https://doi.org/10.1109/MS.2022.3212194
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.48550/ARXIV.2103.04475
https://doi.org/10.1155/2022/8485014
https://doi.org/10.1016/j.scico.2022.102909
https://doi.org/10.1016/j.scico.2022.102909
https://doi.org/10.1051/epjconf/202024503006
https://doi.org/10.1051/epjconf/202024503006
https://doi.org/10.1109/TELFOR56187.2022.9983681
https://doi.org/10.1109/TELFOR56187.2022.9983681

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DevSecOps workflow
	2.2 Security in design phase of DevSecOps
	2.3 Security in run-time phase of DevSecOps

	3 Approach
	4 The services of inspection
	4.1 Design-time IaC and component inspection
	4.2 Design-time IaC Scan results
	4.3 Run-time service inspection

	5 Use-cases and applications
	6 Conclusion and Future Work
	7 Acknowledgments
	References



